Page 60 - 68
P. 60

Теоретична механіка













                                         Рис. 45                          Рис. 46

                                  Подальше  спрощення  отриманої  системи  сил  можна
                            провести в двох напрямах. Її можна звести до двох мимобіж-
                            них сил або звести до силового гвинта (динами).
                                  Силовим гвинтом (динамою) називається система сил,
                                  яка складається з пари сил і сили, яка перпендикуляр-
                                  на до площини дії пари (рис. 46).
                                  Тут  ми  розглянемо  зведення  системи  сил  до  силового
                            гвинта. Для цього момент отриманої пари  сил (рис. 45) роз-
                            кладемо на дві складові (рис. 47, а)
                                                              
                                                     M   M    M  .
                                                            1     2
                            Величини цих складових
                                             M    M  sin  ;   M   M  cos  ,
                                              1             2              
                            і їх напрями:  M   Q ,  M  ||  Q . Вектор моменту  M  зобразимо
                                            1       2                         1
                            парою сил  ,P  P , причому візьмемо сили пари рівними за ве-
                                            
                            личиною силі Q  і розмістимо цю пару так, щоб одна з цих сил
                                          
                            (наприклад,  P ), була прикладена в точці О і напрямлена про-
                                                                             
                                            
                            тилежно силі  Q  (рис. 47, б). Друга сила пари  P  буде прикла-
                            дена в точці А, яка лежить на перпендикулярі, поставленому в
                                                                            
                            точці О до площини, що проходить через Q  і  M  на відстані
                                                  M     M  sin    M  *  sin
                                            OA     1              O       .
                                                   P       Q          R *





                            60
   55   56   57   58   59   60   61   62   63   64   65