Page 13 - 4621
P. 13
n
y ) (t n 1 y ) (t
a a ... a y (t ) 0 . (2.2)
n n n 1 n 1 0
t t
Це рівняння описує процеси в системі у випадку, коли немає зовнішніх дій на
неї. Тобто однорідне рівняння описує власні коливання системи.
Часто використовують операторну форму запису рівняння (2.1), яку отримують на
основі перетворення Лапласа. Тоді (2.1) буде таким:
m
n
(a p a p n 1 ... a )Y ( ) p (b p b p m 1 ... b )X ( ) p . (2.3)
n n 1 0 m m 1 0
Однорідне рівняння (2.2) в операторній формі матиме вигляд:
( pa n a p n 1 ... a )Y (p ) 0 . (2.4)
n n 1 0
Для того щоб вираз (2.4) був рівний нулю, потрібно, щоб нулю дорівнював
множник у дужках. Приходимо до рівняння:
a p n a p n 1 ... a 0. (2.5)
n n 1 0
Це звичайне алгебраїчне рівняння. У ньому р – конкретна змінна величина.
Розв’язавши рівняння (2.5), матимемо розв’язок однорідного диференційного рівняння
(2.2). Рівняння (2.5) в математиці має назву характеристичного рівняння. У теорії
диференційних рівнянь, а також у ТАК дане рівняння відіграє важливу роль.
Для розуміння часових характеристик САК доцільно розглянути
використовувані в ТАК типові вхідні сигнали, які можна подавати на вхід САК з метою
отримання відповідних характеристик цих САК.
Типові сигнали – стандартні сигнали, які використовуються при теоретичних та
експериментальних дослідженнях та описуються простими математичними
залежностями і легко відтворюються. Використання типових (“еталонних”) сигналів
дозволяє уніфікувати розрахунки різних систем та порівнювати їх властивості.
Основними видами типових сигналів є:
- ступеневий (рис. 2.1, a). Для цього сигналу характерним є те, що він
змінюється стрибкоподібно в момент часу t = 0 і зберігає своє значення протягом всього
експерименту.
U U U
1,0
t t t
a) Б) в)
Рисунок 2.1 - Типові сигнали: a – ступеневий, б – імпульсний,
в – гармонійний
Приймається в багатьох випадках, що амплітуда стрибка рівна умовній одиниці,
тоді можна записати:
,0 t 0
U ) (t . (2.6)
, 1 t 0
Цей сигнал формується при комп’ютерному моделюванні, а для реальних систем
його величина (наприклад переміщення регулюючого органу), має закінчене значення, а
швидкість зміни (стрибок) обмежена. Одиничний ступеневий сигнал позначається 1(t).
Стрибкоподібний сигнал використовується для визначення часових характеристик та
може імітувати збурення або задаючий сигнал. Необхідно враховувати, що в реальних
системах цей сигнал необхідно підтримувати протягом всього експерименту, що часто
приводить до неприпустимих порушень технологічного режиму.
13