Page 28 - 4223
P. 28
б) Оскільки шукана площина проходить паралель-
но до площини x 2 y 3 z , 0 то за її нормальний вектор
можна взяти вектор n ;1 ; 2 3 даної площини.
тоді рівняння має вигляд
x 2 2 y 5 3 z 3 0 або x 2 y 3 z 3 . 0
в) Нехай точка M yx ;; z є довільна точка шуканої
площини. В цьому випадку вектори M M , M M та век-
1 1 2
тор n 2;1 2 ; компланарні. Отже, M M M M n . 0
1 1 2
x 1 y 2 z
2 3 2 0 ,
1 2 2
тоді
2 x 1 2 y 2 z 0 або 2 x 2 zy 2 . 0
г) Рівняння площини, що проходить через три точки
має вигляд:
M ; yx ;z , M ; yx ;z і M ; yx ; z
1 1 1 1 2 2 2 2 3 3 3 3
x x y y z z
1 1 1
x x y y z z 0
2 1 2 1 2 1
x x y y z z
3 1 3 1 3 1
тоді
x 1 y 1 z 2
1 2 0 , 0
0 2 2
тобто 4 x 1 2 y 1 2 z 2 0
або 2 yx z 5 . 0
д) Запишемо рівняння площини у відрізках на осях
x y z
. 1
a b c
За умовою задачі a 3, c 2 ,
27