Page 80 - 4371
P. 80
1.21 НехайCM – медіана трикутника CA B (див. рису-
1 1
1
нок 1.8). Як відомо, CM CA CB 1 ; крім того,
1
2
1
AB CB CA . Тоді CM AB CA CB CA CA
2 1 1
CB CB CB CA . Приймаючи до уваги, що
1 1
1
CA CA CB CB 0, маємо CM AB CA CB CB CA .
1 1 1 1
2
Але CA CB CB CA , бо CA CA , CB CB , а кут
1 1 1 1
між векторами CA і CB такий же, як і між векторами CB
1 1
і CA . Тому CM AB 0 , що означає перпендикулярність
AM і AB .
Рисунок 1.8 Рисунок 1.9
1.22 Нехай K , L, M , N – середини сторін чотирикут-
ника ABCD (див. рисунок 1.9). Легко бачити, що чотири-
кутник KLMN є паралелограмом і O – точка перетину ді-
агоналей цього паралелограма. Очевидно
1 1
OA ON NA ON DA; аналогічно OB OK AB ,
2 2
1 1
OC OL BC, OD OM CD . Додаючи ці рівності,
2 2
одержуємо: OA OB OC OD OK OL OM ON
80