Page 281 - 4371
P. 281

       a 2  
                                       t   cb  ln  
                                      a         t  
                                          4  4    dt .
                                      0    a   t
                                                    a 2  
                                           x   cb  ln  
                        a  x   cb  ln   x  a     x  
               Тоді  I     4    4  dx       4  4    dx  
                        0   x   a        0    x   a
                                   a 2   
                   x  b2     c ln  x   ln   
                  a                x                  a  x dx
                           
                         4    4          dx   2   cb  ln   a    4  4  dx  
                  0        x   a                         0  x   a
                             a  d     b   c ln a    x 2  a   b   c  ln   a
                                   2
                                 x
                   b   c  ln   a    4  4    2  arctg  2      2    .
                             0  a   x     a          a  0        4a
                  10.55
                     x m arctg  x  1  x m arctg  x   x m arctg  x
                I      2 m   1  dx      2 m   1  dx     2 m   1  dx   I   I .
                                                                     1
                                                                         2
                    0  x     1     0  x     1     1  x     1
                                                1      1         m      1
                       m 1                 1   arctg        1 t  arctg
                      x   arctg  x        1    t  m     t  dt           t
                I              dx   x                           dt .
                 2     x 2  1m    1   t       1       t 2   t 2  1m    1
                     1                        0       1       0
                                                t 2  1m  
                                                                 1   
               Далі  скористаємось  тотожністю  arctg   x   arctg       при
                                                                 x    2
                x    0. отже,
                                            1        m               1  
                                     m
                   1  x m arctg  x  1  x  arctg    1  x  arctg  x   arctg  x  
                I     2  m 1   dx      2  m 1   x  dx        2  m 1    dx  
                   0  x    1      0  x    1      0      x     1
                     1   m               1      m 1                   1
                       x  dx              d x            
                                                 dx         arctg  x  
                                                2
                  2 x  2  1m    1  2  1m    x m 1  1  2  1m  
                     0                   0                              0
                                              2
                                                  .
                                             8 m     1
                                            281
   276   277   278   279   280   281   282   283   284   285   286