Page 277 - 4371
P. 277
x 2 x 2
10.44 dx 2 dx x 2 d ctg 2x
0 1 cos x 0 2 sin 2x 0
x
2
x ctg 2x 2 x ctg 2x dx 0 8 ctg 2x 2xd
0 2
0 0
2 2 2
cos dxx 2
8 x ctgx dx 8 x 8 x d ln sin x 8x ln sin x 0
0 0 sin x 0
2
ln 2
8 ln sin x dx 0 8 4 ln 2.
0 2
Останній інтеграл обчислено в 10.42.
10.45 Скористаємось тотожністю (10.1), а також резуль-
татом, одержаним в 10.42:
2 2
ln cos x ln cosx ln cos x
x dx x x dx
2 2 1 0 2 1 2 1
2 2
1 1
x x ln cos x dx ln cos x dx x t
0 2 1 2 1 0 2
2
ln 2
ln sin t dt .
0 2
10.46 Розглянемо різницю xf sin x dx f sin x dx
0 2 0
2
x sin x dx x t f t cost dt 0 в силу
f
0 2 2 2
непарності підінтегральної функції.
10.47 Як і в попередній задачі: xf cos x dx
0
f cos x dx x f cos x dx x t
2 2 2
0 0
277