Page 45 - 4328
P. 45
4 РЯДИ В КОМПЛЕКСНІЙ ОБЛАСТІ
4.1 Числові ряди
Числовий ряд вигляду
z z z z , (4.1)
1 2 n n
n 1
де z x iy , називається числовим рядом з комплексними
n n n
членами.
Цей ряд збіжний тоді і тільки тоді, коли збігаються ряди
x x x x (4.2)
1 2 n n
n 1
та
y y y y . (4.3)
1 2 n n
n 1
Ряд (4.1) називається абсолютно збіжним, коли збігається ряд
z z z z , (4.4)
1 2 n n
n 1
Ряди (4.2), (4.3), (4.4) є рядами з дійсними членами і питання
про їхню збіжність вирішується за допомогою відомих ознак
збіжності рядів у дійсній області.
Приклад 4.1
Дослідити на збіжність задані ряди.
e in cosin
а) 2 ; б) n .
n 1 n n 1 2
Розв’язок
e in
а) 2 .
n 1 n
in
Скористаємось тим, що e cosn i sin . n Тоді
e in cosn sin n
2 2 i 2 .
n 1 n n 1 n n 1 n
45