Page 56 - 4660
P. 56

Continuous random variables


                  1. f(x) > 0 for all x ∈ R.

                                                                                                              2
                                                                                                          (x−a)
                                                                             1
                  2. The function f(x) has the maximum at x = a, equals     √ . Really f (x) = −   x−a  −  2σ 2  .
                                                                                         ′
                                                                                                    √ e
                                                                           σ 2π                   σ 3  2π
                     Therefore f (x) = 0 if x = a, hence f (x) > 0 for x < a, and f (x) < 0 for x > a. This means
                                                                                  ′
                                 ′
                                                          ′
                                                                              1
                     that x = a is the point of maximum and f max = f(a) =   √ .
                                                                            σ 2π
                  3. Calculating the second derivative of f(x) we can verify that the points x = a ± σ are points
                     of inflexion.
                  4. The graph of the function is symmetric with respect to the vertical straight line x = a.
                  5. lim f(x) = 0, that is OX axes is a horizontal asymptote of the function f(x).
                     x→∞
                   Using these properties we can sketch graph of the function f(x).


                                              ϕ(x)


                                            1
                                           √
                                          σ 2π



                                              0       a − σ      a     a + σ        x


                                     Figure 6.9 – A density function of normal distribution

                   The graph of the density f(x) is the “bell-shaped” curve.
                   The integral distribution function F(x) we find by the formula:

                                                 ∫                     ∫
                                                    x              1     x     (x−a) 2
                                         F(x) =       f(x)dx = √            e −  2σ 2  dx
                                                                σ 2π
                                                  −∞                    −∞
               Setting  x−a  = t; x = a + σt, dx = σdt we obtain
                        σ
                                                                (                               )
                                           ∫  x−a                 ∫  0          ∫  (x−a)/σ
                                       1       σ    t 2      1            t 2               t 2
                            F(x) = √             e −  2 dt = √         e −  2 dt +        e −  2 dt .
                                     σ 2π   −∞               2π     −∞            0
               But
                                    ∫               ∫               √
                                      0                +∞
                                           t 2     1         t 2      2π
                                         e −  2 dt =      e −  2 dt =    (Poisson integral)
                                                   2                  2
                                     −∞               −∞
               and using Laplace function
                                                                 ∫  x
                                                              1         t 2
                                                    Φ(x) = √         e −  2 dt                            (6.21)
                                                              2π  0
               we finally have
                                                                  (      )
                                                           1        x − a
                                                   F(x) =    + Φ            .                             (6.22)
                                                           2          σ
                   Now let us derive a formula for the probability of the occurrence of a normally distributed
               random variable X in a given closed interval [x 1 , x 2 ].
                   We get

                                                           (        (       ))     (       (        ))
                                                             1        x 2 − a        1       x 1 − a
                     P(x 1 ≤ X ≤ x 2 ) = F(x 2 ) − F(x 1 ) =   + Φ              −      + Φ              =
                                                             2          σ            2          σ

                                                              56
   51   52   53   54   55   56   57   58   59   60   61