Page 52 - 4660
P. 52

Continuous random variables


                                Table 1.2 – Some important continuous probability distributions

                 Distribution  Probability law f(x)       E(X)               Var(X)
                                     1 Γ
                 Breit-Wigner   1    2                      −                  −
                                π  1 Γ+(x−x 0 ) 2
                                 4      [       2  ]
                 Gaussian        √ 1  exp −  (x−µ)          µ                  σ 2
                                σ 2π         2σ  2
                                 ( ) c−1
                                                   c
                                                                                          1
                                                                1
                                                                     2
                                                                             2
                                                                                    2
                 Weibull        c  x    exp{−[x/b] }    bΓ(1 + ) b (Γ(1 + ) − Γ (1 + ))
                                b  b                            c            c            c
                                                e
                 chi-squared       1    x (n/2)−1 −x/2      n                  2n
                                2 n/2 Γ(n/2)
                 exponential   λe −λx 1                     1
                                      λ                     λ 2
                 gamma           λ  (λx) r−1 −λx            r                   r
                                           e
                                Γ(r)                        λ                  λ 2
                                          [        2  ]
                                                              2
                 log-normal      √ 1  1  exp − (ln x−µ)  e µ+σ /2        (e σ 2  − 1)e 2µ+σ 2
                                σ 2π x         2σ 2
                 uniform         1                         a+b                (b−a) 2
                                b−a                         2                   12
               The uniform distribution. The distribution of a continuous random variable whose density is
               constant in some closed interval [a, b] and is equal to zero outside this interval is called a uniform
               distribution:
                                                         {
                                                            1  , if x ∈ [a, b],
                                                 f(x) =    b−a
                                                           0, if x /∈ [a, b]
                                                          +∞
                                                          ∫                          b          1
               that is f(x) = c for x ∈ [a, b] but E(X) =    cdx = 1, and hence cx    = 1, c =    . Instead of a
                                                                                    a           b−a
                                                         −∞
               closedinterval[a, b]itispossibletotake(a, b),or[a, b),(a, b]sincearandomvariableiscontinuous.
                   The mean and variance of the uniform distribution are given by
                                                       a + b             (b − a) 2
                                              E(X) =        , Var(X) =           .
                                                         2                 12
                   The graph of the density f(x) has the form
                                                     y
                                                   1
                                                  b−a


                                                    0      a          b      x

                                          Figure 6.4 – A density of uniform distribution

                   Auniformdistributionischaracteristicforthephaseofrandomoscillations. Inpracticewehave
               to consider harmonic oscillations with random amplitude and phase. In such cases the phase is
               often a random variable uniformly distributed over the period of oscillations.
                   Let us find the integral distribution function F(x).
                                 ∫  x
                   Since F(x) =       f(t)dt, then
                                  −∞
                                      ∫  x          ∫  x
                  1. if x < a we have      f(t)dt =     0dt = 0,
                                       −∞            −∞
                  2. if a ≤ x ≤ b we obtain
                               ∫             ∫             ∫            ∫          ∫
                                 x             a             x            a          x   dt     x − a
                                    f(t)dt =      f(t)dt +     f(t)dt =      0dt +           =        ,
                                                                                       b − a    b − a
                                −∞            −∞            a            −∞         a
                  3. if x > b we get

                                        ∫             ∫             ∫            ∫
                                          x             a             b            x
                                             f(t)dt =      f(t)dt +     f(t)dt +    f(t)dt =
                                         −∞            −∞            a            a

                                                              52
   47   48   49   50   51   52   53   54   55   56   57