Page 53 - 4660
P. 53

Important continuous distributions


                                              ∫          ∫           ∫
                                                a          b  dt       x       b − a
                                           =       0dt +           +     odt =       = 1.
                                                             b − a             b − a
                                               −∞         a           b
                   Therefore
                                                         
                                                         0,      if x < a,
                                                         
                                                 F(x) =    x−a ,  if a ≤ x ≤ b,
                                                           b−a
                                                         
                                                         
                                                           1,     if b < x.
               The graph of this function is of the form:

                                                     y
                                                    1



                                                    0      a          b      x

                                    Figure 6.5 – An integral function of uniform distribution


                   Let us define E(x) and Var(X).
                                           ∫                ∫  b
                                             +∞                  xdx       1   x 2   b  a + b
                                   E(x) =        xf(x)dx =            =            =       .
                                                                b − a    b − a 2  a     2
                                            −∞                a

                                           ∫                           ∫  b
                                             +∞                                a + b    dx
                                                            2
                                Var(X) =         (x − E(x)) f(x)dx =      (x −       ) 2     =
                                                                                 2     b − a
                                            −∞                          a
                                                   1         a + b   b   (b − a) 2
                                             =          (x −       ) 3   =       .
                                               3(b − a)        2     a      12


               Example 6.6. Find the probability that a random variable X assumes values on
               the closed interval [α, β] ⊂ [a, b].                                                           ,
               Solution.


                                            ∫
                                               β                           β − α    α − a     β − α
                           P(α ≤ x ≤ β) =       f(x)dx = F(β) − F(α) =            −        =        .
                                              α                            b − a     b − a    b − a


               The exponential distribution. An exponential distribution is determined by the density:

                                                          {
                                                            0,       if x < 0,
                                                  f(x) =                                                  (6.16)
                                                            ke −kx ,  if x ≥ 0.

                                         ∫  ∞
               where k > 0 and satisfies      f(x)dx = 1 as required.
                                          −∞
                   The graph of this function is shown in (Fig. 6.6).
                   The integral distribution function F(x) is of the form

                                                        {
                                                          0,          for x < 0,
                                                F(x) =
                                                          1 − e −kx ,  for x ≥ 0

               and is shown in (Fig. 6.7)


                                                              53
   48   49   50   51   52   53   54   55   56   57   58