Page 49 - 4660
P. 49

Numerical Characteristics of Continuous Random Variables


                     Numerical Characteristics of Continuous Random Variables


               Let a continuous random variable X be given by distribution density f(x). Take its possible values
               in a closed interval [a, b].

                   Divide the interval [a, b] into n subintervals ∆x 1 , ∆x 2 , . . . , ∆x n and choose points x i
               (i = 1, . . . , n) between a and b.
                   Define ME by analogy with that of the case of DRV in such a way P(x i < X < x i + ∆x i ) ≈
               f(x i )∆x i :
                                                         n
                                                        ∑
                                                            x i f(x i )∆x i .                              (6.7)
                                                        i=1
                   Passing to the limit, when max i ∆x i → 0 we get

                                                      n                ∫  b
                                                     ∑
                                              lim       x i f(x i )∆x i =  xf(x)dx.                        (6.8)
                                            max ∆x i →0                 a
                                                     i=1

               Definition 6.4. By the mean of a continuous random variable we mean the
               definite integral
                                                              ∫  b
                                                     E(X) =      xf(x)dx.                                  (6.9)
                                                               a                                              ✓

                   If values of a continuous random variable belong to infinite interval (−∞, +∞) then a mean is
               defined by the improper integral

                                                             ∫
                                                               +∞
                                                    E(X) =        xf(x)dx.                                (6.10)
                                                              −∞

                   Since by the variance of a random variable we mean the mean square value

                                                        E(X − E(X))   2


               of the difference X − E(X) then

                                                                 ∫
                                                                    +∞
                                                                                   2
                                                             2
                                    Var(X) = E(X − E(X)) =             (X − E(x)) f(x)dx.                 (6.11)
                                                                   −∞
                   If values of a continuous random variable belong to the close interval [a, b] then

                                                           b
                                                         ∫
                                                                        2
                                              Var(X) =      (x − E(X)) f(x)dx.                            (6.12)
                                                          a


               Example 6.3. Given integral distribution function F(x) :

                                                        
                                                        0, if x ≤ 0,
                                                        
                                                F(x) =     x , if 0 < x ≤ 2,
                                                           2
                                                        
                                                        
                                                          1, if x > 2.
               Find E(X), Var(X) and σ(X).                                                                    ,


                                                              49
   44   45   46   47   48   49   50   51   52   53   54