Page 46 - 4660
P. 46

Continuous random variables


                                   N = 60, M = 25, n = 20                       N = 40, M = 15, n = 10



                   0.20
                                                                 0.25


                   0.15                                          0.20

                                                                 0.15
                   0.10

                                                                 0.10
                   0.05
                                                                 0.05


                   0.00                                          0.00
                        0    2    4     6    8    10   12    14      0    2    4     6    8    10   12    14

                    Figure 5.7 – Some typical hypergeometric distributions with various parameters N, M, n.

                               1.6. Continuous random variables




                     Integral Function of Distribution


               Definition 6.1. The probability of the inequality X < x considered as a function
               of the variable x is called the distribution integral function of the random variable
               X that is
                                                      F(x) = P(X < x).                                     (6.1)
                                                                                                              ✓



               Example 6.1. Find the integral function of the following distribution of a random
               variable and form a graph of this function.
                    X         0       1       3
                                                                                                              ,
                    P         0.2     0.3     0.5

               Solution. Using the formula (6.1) we obtain

                                                         
                                                         0,      if x ≤ 0,
                                                         
                                                         
                                                          0.2,   if 0 < x ≤ 1,
                                                 F(x) =
                                                         0.5,    if 1 < x ≤ 3,
                                                         
                                                         
                                                         
                                                           1,     if x > 3.
                                                    F(x)

                                                    1
                                                   0.5
                                                   0.2
                                                    0      1          3      x

                                  Figure 6.1 – An distribution integral function to Example 6.1




                                                              46
   41   42   43   44   45   46   47   48   49   50   51