Page 39 - 4263
P. 39

Mixed product of vectors



                                                                             −→            −→      −→
                                                                         − →
                                                                                 −→ −→
                                                                                                        −→
                                                                                                − →
                   PROOF. According to the definition of a mixed product: a · b · c =( a × b ) · c = d · c .
                                                       (                      )
                                         −→   −→    −→     y 1 z 1    z 1 x 1    x 1 y 1
                                                                  ;
                   Following formula (5.9), d = a × b =                         . Having multiplied the
                                                                           ;

                                                          x 2 y 2  z 2 x 2   x 2 y 2
                                         − →   −→
                   scalar product of vectors d and c , we will get:

                    −→  −→  −→    y 1 z 1      z 1 x 1     x 1 y 1      y 1 z 1      x 1 z 1
                    a · b · c =          · x 3 +      · y 3 +      · z 3 =      · x 3 −      · y 3 +

                                  y 2 z 2        z 2 x 2       x 2 y 2        y 2 z 2        x 2 z 2


                                                                 x 1 y 1 z 1
                                                   x 1 y 1
                                               +          · z 3 = x 2 y 2 z 2 .                        2



                                                  x 2 y 2

                                                                 x 3 y 3 z 3
                     Thus, the mixed product of three vectors equals to a determinant of the third order, consisting
                 from coordinates of these vectors, placed in rows.
                  Example 5.4. Calculate a volume of a pyramid with vertices in points:
                  A(1; 2; −1), B (3; 2; 1), C(0; 3; 1), D(4; −1; 2).                                    ,







                                                  B







                                                   . . . . .
                                           A                                     C





                                                                        D

                                               Figure 5.7 – Volume of a pyramid








                   Solution. Calculate vectors: AB = (2; 0; 2), AC = (−1; 1; 2), AD = (3; −3; 3) (fig. 5.7). It
                                                               −→ −→ −→
                   is known that the volume of a pyramid, built on sides AB, AB, AB, equals to the 1/6 of a volume of a

                                                            1 −→ −→        −→
                   parallelepiped, built on the same ribs. So, V pyr =  · AB · AC · AD . Calculating a mixed product of
                                                            6
                   vectors:
                                        2    0   2          2    0   2

                      −→ −→        −→
                      AB · AC · AD= −1       1   2 = 3 · −1      1   2 = 3 · (2 + 2 − 2 + 4) = 18. Thus,





                                        3  −3 3           1  −1 1
                   V pyr =  1  · 18 = 3(cub.un).
                          6
                                                              39
   34   35   36   37   38   39   40   41   42   43   44