Page 36 - 4263
P. 36

Multiplication of Vectors



                                           −→
                                    −→
                      PROOF. If a and b are colinear or λ = 0, then this property is obvious.
                                −→
                          −→
                      Let a and b are non-colinear and λ ̸= 0.

                                                                                 −→    −→         −→
                      According to the definition of a cross product, on the one side: λ · ( a × b ) = |λ| · | a | ·

                       −→                         −→     −→         −→    −→
                      | b | · sin φ, on another side: (λ a ) × b ) = |λ| · | a | · | b | · sin φ. That is, the length of
                                      −→              − →
                                 −→
                                                −→
                      vectors λ · ( a × b ) and (λ a ) × b is the same. Moreover, these vectors are perpendicular
                                          −→
                                    −→
                      to every vector a and b , so they are colinear. Finally, these vectors have the same direction,
                      notwithstanding the sign of digit λ (it is suggested to check it individually).
                                     − →      −→    −→
                                −→
                      Thus, λ · ( a × b ) = (λ a ) × b .                                               2
                            −→                     −→
                                             −→
                                                        −→
                                  −→
                      −→
                                        −→
                  5. ( a + b ) × c = a × c + b × c — a distributive property related to the
                     sum of vectors.
                   Let’s consider the cross product in a coordinates form. Let’s have two non-zero vectors in
                                                  −→
                                 −→
               their coordinates: a = (x 1 ; y 1 ; z 1 ), b = (x 2 ; y 2 ; z 2 ).
                Theorem 5.2.
                A cross product of two vectors can be calculated following the formula:
                                          −→ −→ −→

                                           i  j    k     (                          )
                                  − →                       y   z    z  x    x   y
                     −→     −→                                  1   1     1    1     1    1
                                                                                 ;
                                                                       ;
                      c = a × b = x            y    z    =                                  (5.9)

                                          1    1    1       y   z    z  x    x   y
                                          x 2  y 2  z 2
                                                              2   2     2    2     2    2          ⋆
                                                       −→                     −→ −→ −→      − →     −→
                                                −→
                 PROOF. Expansions of vectors a and b through basis vectors i , j , k are: a = x 1 i +
                   −→     −→ −→      −→     − →    −→
                 y 1 j + z 1 k , b = x 2 i + y 2 j + z 2 k . Using properties 4 and 5, find the cross product of vectors
                       −→
                 −→
                 a and b :
                        − →          −→   −→           −→   −→            −→   −→           − →  −→
                   −→
                   a × b = x 1 x 2 · ( i × i ) + x 1 y 2 · ( i × j ) + x 1 z 2 · ( i × k ) + y 1 x 2 · ( j × i )+
                         −→    −→           −→   −→          −→   − →         −→   −→          −→   −→
                 +y 1 y 2 · ( j × j ) + y 1 z 2 · ( j × k )+z 1 x 2 ·( k × i ) + z 1 y 2 ·( k × j ) + z 1 z 2 ·( k × k ).
                                            − → −→    − → −→    −→ −→       −→ −→     −→ −→ −→        −→
                 Accordingtoproperties1and3: i × i = j × j = k × k = 0, i × j = k , i × k = − j ,
                 −→   − →  −→ −→    −→    −→ −→    −→ −→ −→     −→      −→            −→   −→
                 j × i =− k , j × k = i , k × i = j , k × j = − i , we will get: a × b = (y 1 z 2 −
                       − →                  −→                  −→
                 y 2 z 1 ) · i + (x 2 z 1 − x 1 z 2 ) · j + (x 1 y 2 − x 2 y 1 ) · k or
                                                                                − → −→ −→

                                                                           i  j   k
                             − →           −→          −→          −→
                        −→         y 1 z 1        z 1 x 1        x 1 y 1
                        a × b =            · i +       · j +        · k = x 1 y 1           (5.10)

                                                                                 z 1
                                   y 2 z 2        z 2 x 2        x 2 y 2
                                                                                                     2
                                                                                x 2 y 2  z 2
                   Formula (5.10) is very often used in practice.
                Example 5.3. Find the area of the triangle △ ABC with given coordinates
                of its vertices: A(2; 1; 0), B(3; 4; −1), C(4; 3; 1).                                 ,






                                                            36
   31   32   33   34   35   36   37   38   39   40   41