Page 37 - 4263
P. 37

Mixed product of vectors


                                              B












                                       A       . . . .                            C

                                                 Figure 5.5 – Area of triangle




                                                               −→
                                                       −→
                                               −→
                                                                                 −→
                   Solution. Coordinates of vectors AB and AC are: AB = (1; 3; −1), AC = (2; 2; 1). It is known,

                                                                       −→
                                                               −→
                                                                                     −→
                   that an area of parallelogram (fig. 5.5), built on vectors AB and AC: S paral = AB × AC . Obviously,
                                                                                            −→
                                                                                                 −→
                                                         −→
                   the area of triangle △ ABC is: S ABC = 1/2 AB × AC . Let’s find a vector product of vectors AB and
                                                                 −→
                   −→
                   AC:
                                         − → −→ −→

                                          i  j   k
                           −→    −→                    3 −1   − →   −1 1   −→    1 3  −→
                           AB × AC = 1        3  −1 =           · i +        · j +      · k =


                                                       2  1          1  2        2 2
                                         2    2   1

                                                  −→     − →   − →
                                              = 5 i + 3 j − 4 k = (5; 3; −4).
                                                                     √                  √
                                  −→    −→     √                                       5 2
                                                         2
                                                    2
                                                                  2
                      It’s module is: AB × AC =  5 + 3 + (−4) = 5 2. Thus, S ABC =         (sq.un.)
                                                                                          2
                       5.3. Mixed product of vectors
                                                                                                −→      −→
                                                                                            − →
                  Definition 5.3. A mixed (vector-scalar) product of three vectors a , b and c
                  is called a digit, which equals to the dot product of vector a on a cross product of
                                                                                 −→
                           − →    −→                    −→  −→  −→
                  vectors b and c . It is denoted by: a · b · c .                                       ✓
                                                   −→  − → −→   −→   − →    −→    − →  −→
                                               −→
                 So, according to the definition, a · b · c = a · ( b × c ) = ( a × b ) · c . Let’s formulate the
                 main properties of a mixed product.
                    1. On cyclic transposition of vectors, when the orientation of three vectors
                                                                                                         − →
                                                                               −→
                                                                                      −→
                                                                                          −→ −→
                                                                            −→
                                                                                                   −→ −→
                                                                                   −→
                       is kept, the mixed product does not change: a · b · c = b · c · a = c · a · b .
                    2. On changing places any two multipliers in a mixed product, meaning
                       changing the orientation of vectors, the mixed product will change its
                                                                                              − →
                                                 −→
                                                                                  − →
                                                           −→
                                             −→
                                                                                                  − →
                                                               −→ −→
                                                                                          −→
                                                     −→
                                                                          −→ −→
                       sign on opposite: a · b · c =− b · a · c = − a · c · b = − c · b · a .
                                −→              − →
                           −→
                                    − →
                                            −→
                                                   −→
                    3. (λ · a ) · b · c = λ( a · b · c ) — a connecting property related to a scalar
                       multiplier.
                     To prove the above properties the definition of a mixed product and main properties of a
                 scalar and cross product should be used.
                     Let’s find out the geometrical essence of a mixed product of three vectors.
                                                              37
   32   33   34   35   36   37   38   39   40   41   42