Page 32 - 4263
P. 32

Multiplication of Vectors





                                                         −→
                                                         a
                                                         φ
                                                            −→
                                                    . . . .  b

                                                 Figure 5.1 – Dot product


               permanent force on the straight line segment of the way equals to the dot product of a vector of
               force on a moving vector — this is the physical essence of the dot product.

                   Formula (5.1) could be written in another way. A multiple  b  · cos φ is the projection of
                                                                            −→

                      −→                              −→                                               − →
                                                                                   − → −→
               vector b on the axis, defined by vector a — the projection on vector a :  b  · cos φ=pr−→ b .
                                                                                                      a
               So,
                                                      −→             −→
                                                  −→        −→
                                                  a · b = | a | · pr−→ b .
                                                                   a

                                                  −→
                                 − →
                                     − → −→
                   In an analogy, a · b = b  · pr −→ a . Projections of a vector on another vector can be found
                                                 b
               by formulas:
                                                          −→               −→
                                                      −→               −→
                                                − →   a · b      − →    a · b
                                            pr−→ b =    −→  , pr −→ a =                             (5.2)
                                              a
                                                       | a |    b       −→
                                                                         b
               Based on formula (5.1), a formula for calculating cosine of angle φ can be written as:
                                                                  −→
                                                              −→
                                                              a · b
                                                    cos φ =                                         (5.3)
                                                             − →  −→
                                                            | a | ·  b
                   Let’s consider main properties of a dot product.
                                                                                  −→ −→   − →
                                                                              −→
                  1. A dot product of two vectors is commutative: a · b = b · a . Proof can
                     be performed by using the definition of a dot product.
                  2. A dot product of two vectors has an associative property related to a
                                                         −→            −→           −→
                                                                             −→
                                                                   −→
                                                     − →
                     scalar multiplier, that is: λ·( a · b ) = (λ· a )· b = a ·(λ· b ). When proving,
                     let’s consider a case, when λ > 0(for λ < 0 in the same way). In this case
                                                            −→
                                                    −→
                     angle φ between vectors a and b equals to the angle between vectors

                                −→          −→  − →                         −→  −→
                        −→
                                                                                         −→ −→
                                                         −→ −→
                     λ· a and b . So, λ·( a · b ) = λ·| a |· b ·cos φ, (λ· a )· b = |λ · a |· b ·cos φ =
                                                            −→              −→
                                                                         −→
                         −→
                                                          −→
                              −→
                     λ · | a | ·  b  · cos φ. Evidently, λ · ( a · b ) = (λ · a ) · b .
                                        − →           −→
                                   − →
                                              −→
                     Formula λ · ( a · b ) = a · (λ · b ) can be proved in the same way.
                                                                                                −→
                                                                                           −→
                                                                                                     −→
                  3. A dot product of two vectors has a distributive property: ( a + b ) · c =
                               −→
                     −→ −→         −→
                      a · c + b · c .
                                                                                      − →
                                     −→
                                                              −→
                                                                                                      −→
                                                                              −→
                                                −→
                                          − →
                                                                     −→
                                                                                              −→
                                                         −→
                                −→
                     Indeed, ( a + b )· c = | c |·pr ˙ ( a + b ) = | c |·(pr ˙ a +pr ˙ b ) = | c |·pr ˙ a +
                                                                             A
                                                       A
                                                                                                    A
                                                                                     A
                                                 −→
                                                                 −→
                              −→
                      − →
                                    −→ −→
                                             −→
                                                       −→ −→
                                                                     − →
                     | c | · pr ˙ b = c · a + c · b = a · c + · b · c .
                             A
                  4. If a dot product equals to zero, then equals to zero either one of vectors
                     or a cosine of an angle between these vectors, meaning vectors are
                                            −→                                    − →
                                        − →
                                                                              −→
                     perpendicular: a ⊥ b . It is true in a contrary: if a ⊥ b , then cos φ = 0, so
                          −→
                     −→
                      a · b =0. Therefore, for two non-zero vectors to be perpendicular it is
                     necessary and sufficient their dot product equals to zero.
                  5. Let’s consider the dot product of any vector of itself. Such product is
                                                                                                     −→ 2
                                                              −→ −→
                                                                        −→ −→
                                                                                         −→ −→
                     called a scalar square of a vector: a · a = | a |·| a |·cos 0 = | a |·| a | = | a | .
                                                            32
   27   28   29   30   31   32   33   34   35   36   37