Page 33 - 4263
P. 33

Dot product of vectors


                                                                                         −→2
                       Thus, the scalar square of a vector, which is written as a , equals to a
                       square of its length:
                                                            −→2    −→ 2
                                                            a = | a | .                                 (5.4)

                                                                         − →
                                                                                                       π
                                                                              −→
                                                                  −→
                                                           −→
                                                                                       −→
                  Example 5.1. Let’s have: vector c = 3 a − 2 b , | a | = 2,  b  = 3, φ = / .
                                                                                                        3
                                                 − →
                  Find the module of vector c .                                                         ,
                                                                                                     −→
                                                                          −→
                                                                                               −→
                                                     −→ 2
                                                                     −→
                                                                                           −→
                                                                                                       2
                                                            − →2
                                                                                   −→2
                                                                             2
                   Solution. According to formula (5.4): | c | = c = (3 a −2 b ) = 9 a −2·3 a ·2 b +4 b =
                                                                     √
                                                              − →
                   9 · 4 − 2 · 3 · 2 · 2 · 3 · + 4 · 9 = 3 · 36. So, | c | = 6 3.
                                        1
                                        2
                     Let’s consider the dot product in the view of coordinates.
                  Theorem 5.1.
                                                                                −→
                  Let’s have two vectors in their coordinates: a = (x ; y ; z ), b = (x ; y ; z ). A dot
                                                           −→
                                                                     1
                                                                            1
                                                                        1
                                                                                          2
                                                                                              2
                                                                                                 2
                  product of these vectors equals to the sum of multiplications of corresponding coordinates:
                                                  −→
                                             −→
                                              a · b = x x + y y + z z                                (5.5)
                                                                   1 2
                                                           1 2
                                                                           1 2
                                                                                                       ⋆
                                                          − →                  −→ −→ −→      −→       −→
                                                   −→
                   PROOF. Expansions of vectors a and b through base vectors i , j , k are: a = x 1 i +
                     −→     − → −→     −→      −→     −→
                   y 1 j + z 1 k , b = x 2 i + y 2 j + z 2 k . The dot product of these vectors equals:
                       −→  −→          −→ 2        −→ −→          −→ −→           − → −→         −→ 2
                       a · b = x 1 x 2 · i + x 1 y 2 · i · j + x 1 z 2 · i · k + y 1 x 2 · i · j + y 1 y 2 · j +
                                         −→ −→           −→ −→          −→ −→          −→ 2
                                  +y 1 z 2 · j · k + z 1 x 2 · i · k + z 1 y 2 · j · k + z 1 z 2 · k .
                                         −→ 2   −→ 2   − → 2    −→ −→     −→ −→     −→ −→
                   Taking into account, that i  = j  = k   = 1, i · j = i · k = j · k = 0, we will get:
                       −→
                   −→
                   a · b = x 1 x 2 + y 1 y 2 + z 1 z 2 that it was necessary to prove.                   2
                  Corollary 1.
                     1. A necessary and sufficient condition of perpendicularity of two vectors is the
                        equality:
                                                     x 1 x 2 + y 1 y 2 + z 1 z 2 = 0.                 (5.6)
                                                                                −→
                                                          −→
                     2. The angle between vectors a = (x 1 ; y 1 ; z 1 ) and b = (x 2 ; y 2 ; z 2 ) can be
                        calculated according to the formula:
                                                            x 1 x 2 + y 1 y 2 + z 1 z 2
                                             cos φ = √                √                               (5.7)
                                                         2    2    2      2    2    2
                                                        x + y + z ·     x + y + z   2
                                                              1
                                                         1
                                                                               2
                                                                   1
                                                                          2
                                                      −→
                     3. The projection of vector a = (x 1 ; y 1 ; z 1 ) onto the direction of vector
                        −→
                         b = (x 2 ; y 2 ; z 2 ) can be calculated according to the formula:
                                                       − →
                                                   pr−→ a =  x 1 x 2 + y 1 y 2 + z 1 z 2              (5.8)
                                                               √
                                                      b           2    2    2
                                                                 x + y + z  2
                                                                       2
                                                                  2
                      These formulas obviously implies from Theorem 5.1.                                2
                                                              33
   28   29   30   31   32   33   34   35   36   37   38