Page 170 - 6251
P. 170
3.1 Побудова та аналіз економетричних моделей
з двома змінними
При моделюванні та аналізі багатьох соціально-економічних
явищ та процесів виникає задача виявлення та оцінювання зв’язку
між ними, один з яких є незалежною змінною (x), чи фактором, а
інше (y) – залежною, або результативною ознакою.
Форма зв’язку між змінними х та у встановлюється шляхом
логічного аналізу їхньої природи та зовнішнього вигляду
кореляційного поля та емпіричної лінії регресії, а тіснота зв’язку –
величиною коефіцієнта кореляції.
В економічних дослідженнях досить часто використовують
лінійні економетричні моделі з двома змінними.
У випадку лінійного зв’язку між змінними х та у тіснота
(щільність) зв’язку оцінюється коефіцієнтом парної кореляції, який
можна розрахувати за наступною формулою:
xy х у
ху . (3.1)
х у
де ху – середнє значення добутку змінної х на змінну у ;
х , у – середнє значення змінних х та у .
Параметри лінійної економетричної моделі з двома змінними
а та а оцінюють на основі методу найменших квадратів шляхом
0
1
розв’язання системи нормальних рівнянь:
п п
х
х
п а 0 а 1 і і у і
п і 1 п і 1 п , (3.2)
а х а х 2 х у
0 і 1 і і і
і 1
і 1
і 1
де n – кількість спостережень або довжина вибірки.
Лінійна залежність між змінними х та у є частинним випадком
більш загальної форми зв'язку – нелінійної.
В економетричних дослідженнях досить часто використовують
такі нелінійні моделі:
а
– гіпербола: у а 1 и;
0
х
х
– показникова функція: у а а и ;
0 1
169