Page 105 - 6099
P. 105

Maximum Principle. Let D be a connected bounded open set (in either two- or
                   three-dimensional space). Let either u(x, y) or u(x, y, z) be a harmonic function in D
                   that is continuous on D = D ∪ (boundaryD). Then the maximum and the minimum
                   values of u are attained on boundary D and nowhere inside (unless u ≡ constant).
                       In other words, a harmonic function is its biggest somewhere on the boundary and its
                   smallest somewhere else on the boundary.



                   10.2       Polar coordinates


                   Polar coordinates in two dimensions are defined by

                                                  x = ρ cos ϕ, y = ρ sin ϕ,                        (10.1)
                                                  p
                                                           2
                                                      2
                                              ρ =   x + y , ϕ = arctan(y/x),                       (10.2)
                   as indicated schematically in Fig. 10.1.

                                               y






                                                                       M
                                                             ρ
                                                                       y
                                                          ϕ                      ρ


                                               0             x                  x




                                               Figure 10.1: Polar coordinates


                       Using the chain rule we find

                                           ∂    ∂ρ ∂     ∂φ ∂      x ∂     y ∂
                                             =         +        =       −        =
                                          ∂x    ∂x ∂ρ    ∂x ∂φ     ρ ∂ρ    ρ ∂φ
                                                                            2
                                                           ∂     sin φ ∂
                                                   = cos φ    −          ,                         (10.3)
                                                           ∂ρ     ρ ∂φ
                                           ∂    ∂ρ ∂     ∂φ ∂      y ∂     x ∂
                                              =        +        =       +        =
                                                                            2
                                          ∂y    ∂y ∂ρ    ∂y ∂φ     ρ ∂ρ    ρ ∂φ
                                                           ∂    cos φ ∂
                                                   = sin φ    +          .                         (10.4)
                                                          ∂ρ      ρ ∂φ

                   We can write
                                                            ∂       1 ∂
                                                    ∇ = b e ρ  + b e φ                             (10.5)
                                                            ∂ρ      ρ ∂φ



                                                             98
   100   101   102   103   104   105   106   107   108   109   110