Page 107 - 6099
P. 107

δρ



                                                                              ρδϕ




                                                                              ρ + δρ

                                                                              ρ
                                                            ϕ














                                       Figure 10.2: Integration in polar coordinates


                   once again we can write ∇ in terms of these coordinates.

                                                     ∂         1   ∂       1 ∂
                                            ∇ = b e r  + b e φ        + b e θ  .                  (10.15)
                                                    ∂r      r sin θ ∂φ     r ∂θ

                   where the unit vectors

                                             b e r = (sin θ cos φ, sin θ sin φ, cos θ),
                                                   b e φ = (− sin φ, cos φ, 0),

                                            b e θ = (cos φ cos θ, sin φ cos θ, − sin φ).          (10.16)

                   are an orthonormal set. We say that spherical coordinates are orthogonal.
                                                         2
                       We can use this to evaluate ∆ = ∇ ,

                                           1 ∂     ∂      1   1   ∂       ∂      1 ∂ 2
                                     ∆ =        (r 2  ) +           (sin θ  ) +        .          (10.17)
                                                                                 2
                                                           2
                                            2
                                          r ∂r     ∂r     r sin θ ∂θ     ∂θ     r ∂φ  2
                   Finally, for integration over these variables we need to know the volume of the small
                   cuboid contained between r and r + δr, θ and θ + δθ and φ and φ + δφ. The length
                   of the sides due to each of these changes is δr, rδθ and r sin θδθ, respectively. We thus
                   conclude that
                                     Z                     Z
                                                                 ∗
                                                                          2
                                        f(x, y, z)dxdydz =      f (r, θ, φ)r sin θdrdθdφ.         (10.18)
                                      V                      V  ∗



                                                            100
   102   103   104   105   106   107   108   109   110   111   112