r Z 2 h p u n (0) = sin( λ n x)f(x) dx ≡ f n h 0 Thus the temperature is given by r ∞ 2 X p u(x, t) = u n (t) sin( λ n x), h n=1 r Z 2 t p n e −κλ nt + κ e −κλ n(t−τ) λ n α(τ) + (−1) β(τ) dτ. u n (t) = f n h 0 95