Page 106 - 6099
P. 106

where the unit vectors
                                          b e ρ = (cos φ, sin φ), b e φ = (− sin φ, cos φ),        (10.6)


                   are an orthonormal set. We say that circular coordinates are orthogonal.
                                                         2
                       We can now use this to evaluate ∇ ,
                                                                     2
                                           ∂ 2   sin φ cos φ ∂    sin φ ∂ 2    sin φ cos φ ∂
                                2
                                       2
                              ∇ = cos ϕ        +               +            +               +
                                          ∂ρ 2       ρ 2    ∂φ      ρ 2  ∂φ 2      ρ 2   ∂φ
                                                                  2
                                        ∂ 2    sin φ cos φ ∂   cos φ ∂  2    sin φ cos φ ∂
                                     2
                                + sin φ     −                +            −                =
                                        ∂ρ 2       ρ 2   ∂φ      ρ 2  ∂φ 2       ρ 2   ∂φ
                                         ∂ 2    1 ∂     1 ∂ 2    1 ∂     ∂      1 ∂ 2
                                      =      +       +         =      (ρ   ) +        .            (10.7)
                                                         2
                                                                                2
                                         ∂ρ 2   ρ ∂ρ   ρ ∂φ  2   ρ ∂ρ   ∂ρ     ρ ∂φ 2
                       A final useful relation is the integration over these coordinates.
                       As indicated schematically in Fig. 10.2, the surface related to a change ρ → ρ + δρ,
                   φ → φ + δφ is ρδρδφ. This leads us to the conclusion that an integral over x, y can be
                   rewritten as         Z                 Z
                                           f(x, y)dxdy =     f(ρ cos φ, ρ sin φ)ρdρdφ.             (10.8)
                                         V                 V

                   10.3       Spherical coordinates


                   Spherical coordinates are defined as

                                        x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ,         (10.9)
                                                                              p
                                                                                  2
                                p                                                x + y 2
                                             2
                                   2
                                        2
                           r =    x + y + z , φ = arctan(y/x), θ = arctan(              ),        (10.10)
                                                                                   z
                       as indicated schematically in Fig. 10.3.
                       Using the chain rule we find
                          ∂     ∂r ∂     ∂φ ∂      ∂θ ∂     x ∂        y    ∂         xz      ∂
                             =        +         +        =       −             +   p             =
                          ∂x    ∂x ∂r    ∂x ∂φ    ∂x ∂θ     r ∂r   x + y ∂φ      r 2  x + y ∂θ
                                                                          2
                                                                     2
                                                                                       2
                                                                                            2
                                                     ∂     sin φ ∂     cos φ cos θ ∂
                                        = sin θ cos φ   −           +               ,             (10.11)
                                                    ∂r    r sin θ ∂φ       r     ∂θ
                                              ∂     ∂r ∂     ∂φ ∂     ∂θ ∂
                                                 =         +        +        =
                                              ∂y    ∂y ∂y    ∂y ∂φ    ∂y ∂θ
                                            y ∂        x    ∂         yz      ∂
                                         =       +             +    p            =
                                                     2
                                                          2
                                            r ∂r    x + y ∂φ      r 2  x + y ∂θ
                                                                       2
                                                                            2
                                                    ∂     cos θ ∂     sin φ cos θ ∂
                                        = sin θ sin φ  +            +              , ,            (10.12)
                                                    ∂r    r sin θ ∂φ      r     ∂θ
                                                                           p
                                   ∂    ∂r ∂     ∂φ ∂     ∂θ ∂      z ∂       x + y ∂
                                                                                    2
                                                                               2
                                     =        +         +        =       −               =        (10.13)
                                  ∂z    ∂z ∂r    ∂z ∂φ    ∂z ∂θ     r ∂r       r 2   ∂θ
                                                              ∂    sin θ ∂
                                                 = sin θ sin φ  −          .                      (10.14)
                                                             ∂r      r ∂θ
                                                             99
   101   102   103   104   105   106   107   108   109   110   111