Page 110 - 6099
P. 110

u = g(x)




                                  u = j(y)                                    u = k(y)
                                                                                x




                                                     u + u = h(x)
                                                      y

                         Figure 10.5: Inhomogeneous boundary mixed conditions in the rectangle

                                                        u = g(x)





                                      u = 0                                    u = 0
                                                                                x




                                                       u + u = 0
                                                         y

                          Figure 10.6: Homogeneous boundary mixed conditions in the rectangle


                            0
                   So 0 = Y (0)+Y (0) = Bβ n +A. Without losing any information we may pick B = −1,
                   so that A = β n , Then
                                               Y (Y ) = β n cosh β n y − sinh β n y
                   Therefore, the sum

                                                ∞
                                                X
                                      u(x, y) =    A n sin β n x(β n cosh β n y − sinh β n Y )
                                                n=0
                   is a harmonic function in D that satisfies all three homogeneous BCs. The remaining
                   BC is u(x, b) = g(x). It requires that

                                               ∞
                                              X
                                      g(X) =      A n (β n cosh β n b − sinh β n b) · sinh β n x
                                              n=0

                   for 0 < x < a. This is simply a Fourier series in the eigenfunctions sin β n x. The
                   coefficients are given by the formula

                                                                      Z  a
                                          2
                                    A n = (β n cosh β n b − sinh β n b) −1  g(x) sin β n xdx.
                                          a                            0
                   Example 10.2 The same method works for a three-dimensional box {0 < x < a, 0 <
                   y < b, 0 < z < c} with boundary conditions on the six sides. Take Dirichlet conditions



                                                            103
   105   106   107   108   109   110   111   112   113   114   115