Page 81 - 4811
P. 81

Application of Laplace Transform


               simple example of an initial value problem for a 2 × 2 system.
                .  We illustrate with a few examples.



                   Example 5.9,

                                       dy            dz
                                           = −z;         = y, y(0) = 1, z(0) = 1,
                                        dt           dt
               . . . . .
                .

                   Solution. Then

                                       L(y ) = −L(z) i. e., sL(y) − 1 = −L(z)                          (5.3)
                                            ′



                   and
                                                ′
                                           L(z ) = L(y) i. e., sL(z) = L(y).
                   Solving the simultaneous equation (5.3)

                                              2
                                            s L(y) − s = −sL(z) = −L(y),

                   or
                                                                   s
                                                       L(y) =           ,
                                                                  2
                                                                s + 1
                   so that
                                                                     ′
                                                y = cos t, z = −y = sin t.
                .
               . . . .



                   Example 5.10,
                                                 {
                                                   y + z + y + z = 1,
                                                     ′
                                                          ′
                                                                t
                                                     ′
                                                   y + z = e ,
                   y(0) = −1, z(0) = 2.
                .
               . . . . .
                   Solution. From the first equation, we have

                                                                                       1
                                      sL(y) + 1 + sL(z) − 2 + L(y) + L(z) = .                          (5.4)
                                                                                       s
                   From the second equation, we have


                                                                           1
                                                sL(y) + 1 + L(z) =             .                       (5.5)
                                                                        s − 1


                   Solving (5.4) and (5.5), we arrive at

                                                  2
                                              −s + s + 1         1      2           1
                                    L(y) =                   =     −         +            .
               . . . .                          s(s − 1)  2      s    s − 1     (s − 1)  2


                                                              80
   76   77   78   79   80   81   82   83   84   85   86