Page 76 - 4811
P. 76

General Solutions
                .



                   Example 5.4, Solve

                                              {
                                                 sin t, 0 ≤ t ≤ π,
                                    ′′
                                                                                  ′
                                   y + y =                              y(0) = y (0) = 0.
                                                 0,      t > π,
               . . . . .
                .
                   Solution. We have

                                                  π                  −e −st
                                                ∫                                               π
                            2
                           s L(y) + L(y) =          e −st  sin tdt =        (s · sin t + cos t)   =
                                                                      2
                                                 0                   s + 1                      0
                                                         e πs         1
                                                    =           +         .
                                                         2
                                                                    2
                                                       s + 1       s + 1
                   Therefore,
                                                            1            e πs
                                              L(y) =               +             ,
                                                          2
                                                                        2
                                                       (s + 1)   2    (s + 1)  2
                   and by the second translation theorem,

                                                          [                                         ]
                             1                              1
                        y = (sin t − t cos t) + u (t)         (sin(t − π) − (t − π) cos(t − π)) .
                                                      π
                             2                              2
                   In other words,

                                               {
                                                  1 (sin t − t cos t),  0 ≤ t < π,
                                          y =     2
                                                    1
                                                  − π cos t,            t ≥ π.
                                                    2
                   Observe that denoting the input function by f(t),


                                   f(t) = sin t(1 − u (t)) = sin t + u (t) sin(t − π),
                                                        π
                                                                           π
                   from which
                                                               1         e −πs
                                               L(f(t)) =             +         ,
                                                              2
                                                                         2
                                                            s + 1       s + 1
               . . . .  again by the second translation theorem.



                     General Solutions


               If the initial-value data of (5.1) are unspecified, the Laplace transform can still be
                .
               applied in order to determine the general solution.


                   Example 5.5, Consider

                                                                    −t
                                                         ′′
                                                        y + y = e ,
               . . . . .

                                                              75
   71   72   73   74   75   76   77   78   79   80   81