Page 79 - 4811
P. 79

Application of Laplace Transform
                .

                                                      s − 1                   s − 1
                                    Y (s) =                          =                     .
                                                                                 2
                                                        2
                                              (s − 2)(s − s − 2)         (s − 2) (s + 1)
                   Use partial fraction:

                                           s − 1             A         B           C
                                                        =         +          +           .
                                              2
                                     (s − 2) (s + 1)       s + 1     s − 2      (s − 2) 2
                   Compare the numerators:


                                                       2
                                  s − 1 = A(s − 2) + B(s + 1)(s − 2) + C(s + 1).

                                                    2                                 1
                   Set s = −1, we get A = − . Set s = 2, we get C =                     . Set s = 0 (any
                                                    9                                 3
                                                                                             2
                   convenient values of s can be used in this step), we get B = . So
                                                                                             9
                                                   2    1      2    1      1     1
                                       Y (s) = −            +           +              ,
                                                   9 s + 1     9 s − 2     3 (s − 2)  2

                   and
                                                                 2        2       1
                                                                             2t
                                                 −1
                                                                                      2t
                                      y(t) = L [Y (s)] = − e        −t  + e + te .
                                                                 9        9       3
                   Compare this to the method of undetermined coefficients: general solution
                   of the equation should be y = y +y , where y is the general solution to the
                                                        h
                                                             p
                                                                         h
                   homogeneous equation and y is a particular solution. The characteristic
                                                      p
                                   2
                   equation is k − k − 2 = (k + 1)(k − 2) = 0, so k = −1, k = 2, and
                                                                                  1
                                                                                               2
                             −t
                                       2t
                   y = C e +C e . Since 2 is a root, so the form of the particular solution
                    h
                                    2
                           1
                                2t
                   is y = Ate . This discussion concludes that the solution should be of the
                       p
                   form
                                                                               2t
                                                                     2t
                                              y(t) = C e   −t  + C e + Ate ,
                                                                   2
                                                        1
               . . . .  for some constants C , C , A. This fits well with our result.
                                             1
                                                  2
                .
                   Example 5.8, (Pure imaginary roots)
                                                                              ′
                                       y + y = cos 2t,          y(0) = 2, y (0) = 1.
                                         ′′
               . . . . .
                .
                   Solution. Again, let’s first predict the terms in the solution:

                         2
                        k + 1 = 0;       k 1,2  = ±i;   y = C cos t + C sin t;         y = A cos 2t.
                                                                1
                                                                                        p
                                                                             2
                                                         h
                   so
                                                  p
                                            h
               . . . .                y = y + y = C cos t + C sin t + A cos 2t,
                                                                      2
                                                         1
                                                              78
   74   75   76   77   78   79   80   81   82   83   84