Page 83 - 4811
P. 83

Application of Laplace Transform
                .

                                                           3                    1
                                            s = 1 : A = ;        s = 5 : B = .
                                                           4                    4
                   Similarly

                                             C         D
                                 Y (s) =          +        ;   C(s − 5) + D(s − 1) = 3,
                                           s − 1     s − 5

                                                             3                    3
                                           s = 1 : C = − ;        s = 5 : D = .
                                                             4                    4
                   So,

                                                                      
                                            3    1      1    1                        3       1
                                                                                         t
                            X(s) =                  +                  x(t) =         e + e    5t
                           
                                                                       
                                                                       
                           
                                           4 s − 1     4 s − 5                      4       4
                                                                   ⇒
                                           3    1      3    1                       3       3
                                                                      
                                                                                       t       5t
                              Y (s) = −             +                   y(t) = − e + e
                                            4 s − 1     4 s − 5                       4       4
               . . . .
                   In this subsection we extend the definition of Laplace transform to
               matrix-valued functions and apply this extension to solving systems of
               differential equations. Let y (t), y (t), . . . , y (t) be members of PE. Consider the
                                                       2
                                                                    n
                                                1
               vector-valued function
                                                                     
                                                                y (t)
                                                                  1
                                                               y (t) 
                                                               2     
                                                     y(t) =  .  .
                                                                   .
                                                               . 
                                                                y (t)
                                                                  n
               The Laplace transform of y(t) is
                                                           ∫                                  
                                                                ∞        −st
                                                                  y (t)e    dt          L[y (t)]
                                                                    1
                                                                                            1
                                                               0 ∫
                                      ∫                         ∞
                                         ∞                       y (t)e −st          L[y (t)] 
                                                                            dt
                                                           
                                                                                                  .
                          L[y(t)] =         y(t)e −st dt =    0    2  . .                2 . .  
                                                                                = 
                                        0                            .                   .    
                                                              ∫
                                                               ∞  y (t)e −st dt         L[y (t)]
                                                               0   n                        n
               In a similar way, we define the Laplace transform of an m × n matrix to be the
               m × n matrix consisting of the Laplace transforms of the component functions. If
               the Laplace transform of each component exists then we say y(t) is Laplace
                .
               transformable.
                   Example 5.12, Find the Laplace transform of the vector-valued
                   function
                                                                 
                                                                    2
                                                                   t
                                                                   1
                                                        y(t) =   
                                                                   e t
               . . . . .




                                                              82
   78   79   80   81   82   83   84   85   86   87   88