Page 83 - 4811
P. 83
Application of Laplace Transform
.
3 1
s = 1 : A = ; s = 5 : B = .
4 4
Similarly
C D
Y (s) = + ; C(s − 5) + D(s − 1) = 3,
s − 1 s − 5
3 3
s = 1 : C = − ; s = 5 : D = .
4 4
So,
3 1 1 1 3 1
t
X(s) = + x(t) = e + e 5t
4 s − 1 4 s − 5 4 4
⇒
3 1 3 1 3 3
t 5t
Y (s) = − + y(t) = − e + e
4 s − 1 4 s − 5 4 4
. . . .
In this subsection we extend the definition of Laplace transform to
matrix-valued functions and apply this extension to solving systems of
differential equations. Let y (t), y (t), . . . , y (t) be members of PE. Consider the
2
n
1
vector-valued function
y (t)
1
y (t)
2
y(t) = . .
.
.
y (t)
n
The Laplace transform of y(t) is
∫
∞ −st
y (t)e dt L[y (t)]
1
1
0 ∫
∫ ∞
∞ y (t)e −st L[y (t)]
dt
.
L[y(t)] = y(t)e −st dt = 0 2 . . 2 . .
=
0 . .
∫
∞ y (t)e −st dt L[y (t)]
0 n n
In a similar way, we define the Laplace transform of an m × n matrix to be the
m × n matrix consisting of the Laplace transforms of the component functions. If
the Laplace transform of each component exists then we say y(t) is Laplace
.
transformable.
Example 5.12, Find the Laplace transform of the vector-valued
function
2
t
1
y(t) =
e t
. . . . .
82