Page 78 - 4811
P. 78

General Solutions
                .

                   Therefore,
                                                1                       y (0)
                                                                          ′
                                         y =      t sin λt + cos λt +          sin λt.                 (5.2)
                                               2λ                         λ

                   Finally, from (5.2)
                                                       ′
                                                      y (0)           π
                                                            = 1 −        ,
                                                        λ            4λ 2
                   gives
                                                      y (0)           π
                                                       ′
                                                            = 1 −        ,
                                                        λ            4λ 2
                   and thus
                                            1                        (       π  )
                                      y =      t sin λt + cos λt + 1 −            sin λt.
                                           2λ                              4λ 2
                   Similarly, if the boundary data had been, say

                                                                   π
                                                                 ( )
                                                  y(0) = 1, y   ′       = 1,
                                                                   4
                   then differentiating in (5.2)


                                        1
                                   ′
                                                                                  ′
                                 y =      (sin λt + λt cos λt) − λ sin λt + y (0) cos λt.
                                       2λ
                   Thus,
                                                          π       −π
                                                        ( )
                                                1 = y  ′      =       − y (0)
                                                                           ′
                                                          λ       2λ
                   and
                                                                (      π  )
                                                     ′
                                                    y (0) = − 1 +
                                                                       2λ
                   to yield
                                           1                        1  (      π  )
                                     y =      t sin λt + cos λt −       1 +        sin λt.
                                           2λ                       λ        2λ
               . . . .
                .

                   Example 5.7, (Distinct real roots, but one matches the source
                   term.) Solve the initial value problem by Laplace transform


                                                           2t
                                                                              ′
                                        ′′
                                       y − y − 2y = e ,          y(0) = 0, y (0) = 1.
                                               ′
               . . . . .
                .
                   Solution. Take Laplace transform on both sides of the equation, we get
                                                                                                      1
                                                      2t
                                                              2
                                   ′
                         ′′
                     L[y ] − L[y ] − 2L[y] = L[e ] ⇒ s Y (s) − 1 − sY (s) − 2Y (s) =                      .
                                                                                                   s − 2
                   Solve it for Y (s) :
                                                                 1            s − 1
                                         2
                                       (s − s − 2)Y (s) =             + 1 =           ⇒
               . . . .                                         s − 2          s − 2

                                                              77
   73   74   75   76   77   78   79   80   81   82   83