Page 77 - 4811
P. 77

Application of Laplace Transform
                .



                   and let y(0) = y , y (0) = y be unspecified.
                                             ′
                                                      1
                                        0
               . . . . .
                .
                   Solution. Then
                                         2
                                                                                    −t
                                                              ′
                                       s L(y) − sy(0) − y (0) + L(y) = L(e ),
                   that is,


                                                       1              sy 0        y 1
                                     L(y) =                      +           +          =
                                                                      2
                                                         2
                                                                                 2
                                               (s + 1)(s + 1)       s + 1       s + 1
                                                       1     1
                                              1/2       s −         y s         y 1
                                                                     0
                                         =          +  2     2  +          +         ,
                                                        2
                                                                    2
                                                                               2
                                             s + 1     s + 1      s + 1       s + 1
                                                                                      −1
                   by taking a partial fraction decomposition. Applying L ,
                                                   (         )          (         )
                                          1                1                     1
                                     y = e   −t  + y −          cos t + y +          sin t.
                                                      0
                                                                            1
                                          2                2                     2
                   Since y , y can take on all possible values, the general solution to the
                                1
                            0
                   problem is given by
                                                                           1
                                                                              −t
                                              y = c cos t + c sin t + e ,
                                                     0
                                                                1
                                                                           2
                   where c , c are arbitrary real constants. Note that this solution is valid
                            0
                                1
                   for −∞ < t < ∞.
               . . . .
                   Boundary-Value Problems

                   This type of problem is also amenable to solution by the Laplace transform
                .
               method.

                   Example 5.6, As a typical example consider

                                                                               π
                                              2
                                        ′′
                                       y + λ y = cos λt, y(0) = 1, y(            ) = 1.
                                                                              2λ
               . . . . .
                .
                   Solution. Then
                                                          2
                                                   ′′
                                              L(y ) + λ L(y) = L(cos λt),
                   so that                                     s
                                                2
                                         2
                                                                                   ′
                                       (s + λ )L(y) =                + sy(0) + y (0),
                                                             2
                                                           s + λ   2
                   implying
                                                       s          sy(0)        y (0)
                                                                                 ′
                                        L(y) =                +            +           .
                                                          2 2
                                                    2
                                                                               2
                                                                   2
               . . . .                           (s + λ )        s + λ   2    s + λ  2
                                                              76
   72   73   74   75   76   77   78   79   80   81   82