Page 86 - 4811
P. 86

Differential Equations with Polynomial Coefficients
                .

                                                      
                                                            4
                                                                    3
                                                                           2
                                                           s − 6s + 9s − 4s + 8          
                                     (        1  )
                                       1 +                s (s + 1)(s − 2)(s − 3)       
                                                             2
                                  ×         s−2    =         4      3       2             .
                                               2
                                       −2 −    2        −2s + 8s − 8s + 6s − 4          
                                              s
                                                             2
                                                           s (s + 1)(s − 2)(s − 3)
                   Using the method of partial fractions we can write
                                        4   1     8 1      7      1      1      1      1      1
                             Y (s) =      ·    −    ·   +    ·        −     ·       −     ·
                               1
                                        3 s  2    9 s      3 s + 1       3 s − 2       9 s − 3
                                        2   1     10 1       7     1       2     1       1     1
                           Y (s) = − ·         +      ·  −     ·        −    ·        −    ·       .
                             2
                                        3 s  2     9   s     3 s + 1       3 s − 2       9 s − 3
                   Therefore

                                                           4      8    7        1        1
                                             −1                           −t       2t       3t
                                  y (t) = L [Y (s)] = t −           + e      − e − e
                                   1
                                                  1
                                                           3      9    3        3        9
                                                       2      10    7         2       1
                                                                                         3t
                                                                                2t
                                       −1
                           y (t) = L [Y (s)] = − t +             − e   −t  − e − e , t ≥ 0.
                                            2
                             2
                                                       3      9     3         3       9
                   Hence, for t ≥ 0
                                     (    )     (     )         ( )         (     )        (     )
                                        4         −  8            7           −  1           −  1
                           y(t) = t     3 2  +     10 9  + e −t   3   + e 2t     3   + e 3t     9   .
                                                                                 2
                                                                                                1
                                                                  7
                                       −                                      −              −
                                         3         9              3              3              9
               . . . .
                   The vector equation (5.6) is a linear time invariant system whose Laplace input
               is given by y + G(s) and the Laplace output Y(s). According to (5.7) the system
                              0
                                                          −1
               transformmatrix is given by (sI−A) . We will show that this matrix is the Laplace
                                                                      tA
                                                                                     tA
               transform of the exponential matrix function e . Indeed, e is the solution to the
               initial value problem
                                                   ′
                                                 Φ (t) = AΦ(t), Φ(0) = I,
               whereI is the n×n identitymatrix and A isaconstantn×n matrix. Taking Laplace
               of both sides yields

                                                 sL[Φ(t)] − I = AL[Φ(t)].

               Solving for L[Φ(t)] we find

                                                                              tA
                                             L[Φ(t)] = (sI − A)     −1  = L[e ].



                     Differential Equations with Polynomial Coefficients



               Recall Theorem 2 that for F(s) = L(y(t)),

                                           d n
                                                                    n
                                                              n
                                               F(s) = (−1) L(t y(t)) (s > α)
                                           ds n
                                                              85
   81   82   83   84   85   86   87   88   89   90   91