Page 39 - 4811
P. 39

Properties of Laplace Transform


                   Theorem 2.13È


                                                           p(s)
                   (Partial Fraction Expansion) Let              be a ratio of polynomials with real
                                                           q(s)
                   coefficients. If the denominator q(s) factors as


                                                                    2
                                                               n 1
                                           q(s) = k(s − a ) (s + b s + c ),
                                                                                 1
                                                             1
                                                                          1
                   where the quadratic factor is irreducible then the following identity holds
                      p(s)       A  1         A  2                  A             B s + C   1
                                                                                    1
                            ≡           +             + · · · +       n 1    +                  + R(s),
                                                                                 2
                      q(s)     s − a  1    (s − a ) 2           (s − a )  n 1   s + b s + c   1
                                                  1
                                                                                       1
                                                                        1
                   where R(s) is a polynomial that is equal to zero if the degree of the
                   polynomial p(s) is less than the degree of the polynomial q(s) and
                   A , A , . . . , A , B , C are real constants.
                         2
                                             1
                                        1
                     1
                                   n 1
               . . . . . . .
                .
                   Example 2.31, The partial fraction expansion of

                                                                2
                                                             3s + 4s + 5
                                          F(s) =
                                                                    2
                                                                        2
                                                    (s + 1)(s − 2) (s + 2s + 2)
                   takes the form

                                 2
                              3s + 4s + 5                    A         B          C           Ds + E
                                                       =          +         +            +                ,
                                                                                              2
                                         2
                                     2
                     (s + 1)(s − 2) (s + 2s + 2)          s + 1      s − 2     (s − 2) 2    s + 2s + 2
                   where A, B, C, D and E are constants to be determined.
               . . . . .
                .



                   Example 2.32, Find the inverse Laplace transform of F(s) =
                    2
                   s − s + 9
                               .
                      3
                     s + 9s
               . . . . .
                .
                                                                                          2
                                                                                         s − s + 9
                   Solution. We do not immediately recognize the expression                           as the
                                                                                            3
                                                                                          s + 9s
                   Laplace transform of a function that we know. So we use partial fractions
                              2
                             s − s + 9
                   to write               as a sum of expressions in s that we do recognize. We
                                3
                               s + 9s
                   first factorize the denominator

                                                  2
                                                                   2
                                                 s − s + 9       s − s + 9
                                                              =               ,
                                                    3
                                                                      2
               . . . .                             s + 9s         s(s + 9)
                                                              38
   34   35   36   37   38   39   40   41   42   43   44