Page 37 - 4811
P. 37

Properties of Laplace Transform
                .

                   which is an identity for all values of s. Setting s = 0 gives B = −1; setting
                                                                              2
                   s = 1 gives C = 2. Equating the coefficients of s gives 0 = A + C, and so
                   A = −2. Whence

                             (             )             ( )            (    )           (        )
                                  s + 1                     1              1                  1
                          −1                          −1             −1               −1
                        L                     = −2L             − L             + 2L                 =
                                 2
                                s (s − 1)                   s             s 2              s − 1
                                                                       t
                                                      = −2 − t + 2e .
               . . . .
                .

                   Example 2.29, Find

                                                      (            2        )
                                                                2s
                                                   −1
                                                 L
                                                           2
                                                         (s + 1)(s − 1)    2
                .
               . . . . .
                   Solution. We have


                                           2s 2           As + B          C          D
                                                       =            +          +           ,
                                                             2
                                      2
                                   (s + 1)(s − 1)    2     s + 1        s − 1     (s − 1) 2
                   or
                                                                  2
                                                                                         2
                                 2
                                                        2
                              2s = (As + b)(s − 1) + C(s + 1)(s − 1) + D(s + 1).
                   Setting s = 1 gives D = 1. Also, setting s = 0 gives 0 = B − C + D, or
                                                        −1 = B − C.


                                                  3
                   Equating coefficients of s and s, respectively,

                                                         0 = A + C,

                                                     0 = A − 2B + C.


                   These last two equations imply B = 0. Then from the first equation, C = 1;
                   finally, the second equation shows A = −1. Therefore,

                                (           2        )            (         )          (        )
                                          2s                            s                   1
                             −1                                −1                   −1
                           L                            = −L                   + L                +
                                    2
                                                                      2
                                  (s + 1)(s − 1)    2                s + 1               s − 1
                                               (           )
                                                     1
                                            −1                                  t     t
                                       +L                     == − cos t + e + te .
                                                 (s − 1) 2
               . . . .
                   Suppose that we have F(t) = L(f(t)) for
                                        P(s)                     P(s)
                               F(s) =          =                                     , α ̸= α ,
                                                                                               j
                                                                                        i
                                        Q(s)      (s − α )(s − α ) · · · (s − α )
                                                                    2
                                                                                  n
                                                          1
               where P(s) is a polynomial of degree less than n. In the terminology of complex
                                                              36
   32   33   34   35   36   37   38   39   40   41   42