Page 38 - 4811
P. 38

Partial Fractions


               variables the α are known as simple poles of F(s).                         A partial fraction
                                   i
               decomposition is



                                                   A           A                 A
                                       F(s) =        1    +      2   + · · · +     n   .                 (2.10)
                                                 s − α  1    s − α 2           s − α  n




                   Multiplying both sides of (2.10) by s − α and letting s → α yield
                                                                  i
                                                                                         i


                                                  A = lim (s − α )F(s).                                  (2.11)
                                                    i
                                                                     i
                                                        s→α i



                   We will see that the A are the residues of F(s) at the poles α . Therefore,
                                             i
                                                                                             i

                                                           n       (         )      n
                                                         ∑             A  i        ∑
                                                                                            α i t
                                           −1
                                f(t) = L (F(s)) =             L −1              =      A e .
                                                                                         i
                                                                     s − α
                                                          i=1               i      i=1

               Putting in the expression (2.11) for A gives a quick method for finding the inverse:
                                                          i


                                                               n
                                                             ∑
                                                                                       α i t
                                               −1
                                    f(t) = L (F(s)) =             lim (s − α )F(s)e .                    (2.12)
                                                                              i
                                                                  s→α i
                                                              i=1
                .

                   Example 2.30, Find

                                                   (                          )
                                                                 s
                                               −1
                                             L                                   .
                                                     (s − 1)(s + 2)(s − 3)


                                                                                                 3t
                                                      t
                         f(t) = lim(s − 1)F(s)e + lim (s + 2)F(s)e             −2t  + lim F(s)e =
                                  s→1                     s→−2                       s→3
                                                     1        2          3
                                                                             3t
                                                        t
                                                = − e −         e −2t  +   e .
                                                     6       15         10
               . . . . .
                   Most generally the process of finding the inverse Laplace transform will
               require the use of the method of partial fractions. The following well-known
               result on partial fractions is useful when finding inverse transforms:




                                                              37
   33   34   35   36   37   38   39   40   41   42   43