Page 34 - 4811
P. 34

Partial Fractions


                                                                                                      n
                (iv) For every repeated quadratic factor of the form (as2 + bs + c) , there
                     corresponds a partial fraction of the form

                                   A s + B   1         A s + B   2                  A s + B   n
                                                         2
                                     1
                                                                                      n
                                                 +                     + · · · +                   ,
                                    2
                                                                                     2
                                                        2
                                  as + bs + c       (as + bs + c)    2           (as + bs + c)   n
                     A , . . . , A , B , . . . , B constants.
                       1
                                      1
                                 n
                                                n
               The object is to determine the constants once the polynomial P(s)/Q(s) has been
               represented by a partial fraction decomposition. This can be achieved by several
               different methods.
                         1. Only linear factors in denominator, no repeated factors
                .

                   Example 2.24,
                                                 2s + 14            A         B
                                                               =         +
                                             (s − 2)(s + 4)       s − 2     s + 4
               . . . . .
                .
                   Solution.



                                 A =   2s + 14      = 3,        B =   2s + 14        = −1.


                                        s + 4    s=2                    s − 2    s=−4
                   So,
                                                2s + 14             3         1
                                                              =          −        .
                                            (s − 2)(s + 4)        s − 2     s + 4
               . . . .
                           2. Only linear factors in denominator, repeated factors
                .



                   Example 2.25,

                                        2
                                     3s − 16s + 21             A           B         C
                                                        =             +         +        .
                                              2
                                     (s − 1) (s + 3)       (s − 1)  2    s − 1     s + 3
               . . . . .
                .
                   Solution.

                                                       2
                                                    3s − 16s + 21
                                              A =                          = 2.
                                                          s + 3        s=1
                                          2
                   Move the term                to the left hand side (LHS) and simplify:
                                      (s − 1) 2

                                       2
                                    3s − 16s + 21             2          B          C
                                                       −            =          +         ⇒
                                            2
                                    (s − 1) (s + 3)       (s − 1) 2    s − 1      s + 3
                                               2
                                            3s − 18s + 15           B         C
                                                               =         +         .
                                                    2
               . . . .                      (s − 1) (s + 3)       s − 1     s + 3

                                                              33
   29   30   31   32   33   34   35   36   37   38   39