Page 36 - 4811
P. 36

Partial Fractions


               fractional expressions:


                                                    1               A         B
                                                              =          +        ,
                                            (s − 2)(s − 3)        s − 2     s − 3

               that is,

                                                1 = A(s − 3) + B(s − 2).                                  (2.9)
                   Since(2.9)equatestwopolynomials[1andA(s−3)+B(s−2)]thatareequalfor

               all s in Ω, except possibly for s = 2 and s = 3, the two polynomials are identically
               equalforallvaluesofs.Thisfollowsfromthefactthattwopolynomialsofdegreen
               that are equal at more than n points are identically equal. Thus, if s = 2, A = −1,
               and if s = 3, B = 1, so that

                                                         1              −1         1
                                       F(s) =                      =         +         .
                                                 (s − 2)(s − 3)       s − 2     s − 3

                   Finally,

                                                      (          )          (        )
                                                             1                   1
                                   −1              −1                    −1                   2t     3t
                        f(t) = L (F(s)) = L             −  s − 2    + L       s − 3     = −e + e .
                .


                   Example 2.27,

                                                     1              A         B
                                                               =         +
                                             (s − 2)(s − 3)       s − 2     s − 3

                   or
                                                1 = A(s − 3) + B(s − 2),

                   as we have already seen. Since this is a polynomial identity
                   valid for all s, we may equate the coefficients of like powers of
                   s on each side of the equals sign. Thus, for s, 0 = A + B; and
                         0
                   for s , 1 = −3A−2B. Solving these two equations simultaneously,
                   A = −1, B = 1 as before.
               . . . . . .


                   Example 2.28, Find
                                                          (            )
                                                              s + 1
                                                       −1
                                                     L                    .
                                                             2
                                                            s (s − 1)
               . . . . .
                .
                   Solution. Write
                                                 s + 1       A      B       C
                                                          =     +      +        ,
                                                2
                                              s (s − 1)       s    s 2    s − 1
                   or
                                                                                    2
               . . . .                   s + 1 = As(s − 1) + B(s − 1) + Cs ,


                                                              35
   31   32   33   34   35   36   37   38   39   40   41