Page 29 - 4811
P. 29

Properties of Laplace Transform
                .

                   Evaluating this last integral, we find


                                                         sT
                                                    1−e −  2            1
                                      L[f(t)] =         s     =                , s > 0.
                                                   1 − e −sT     s(1 + e  − sT
                                                                            2 )
                .
               . . . .

                   Example 2.20, Find the Laplace transform of the sawtooth curve
                   shown in Figure 2.1
               . . . . .

                                           f(t)
                                          b



















                                          0                                         t
                                                      a        2a        3a       4a
                                          Figure 2.1 – A sawtooth curve to Example 2
                .

                   Solution. The given function is periodic of period b. For the first period
                   the function is defined by

                                                        a
                                              f (t) = t[u (t) − u (t − b)].
                                                                      0
                                                b
                                                             0
                                                        b
                   So we have
                                         a                               a d
                         L[f (t)] = L[ t(u (t) − u (t − b))] = −              L[u (t) − u (t − b)].
                                                                                  0
                                              0
                                                                                            0
                             b
                                                        0
                                         b                               b ds
                   But
                                                                                    1    e −bs
                       L[u (t) − u (t − b)] = L[u (t)] − L[u (t − b)] ==              −       , s > 0.
                                                                    0
                                     0
                            0
                                                       0
                                                                                    s      s
                   Hence,
                                                         (                        )
                                                       a    1     bse −bs  + e −bs
                                          L[f (t)] =           −                    .
                                              b
                                                       b    s 2          s 2
                   Finally,
                                                                 [                      ]
                                                 L[f (t)]      a 1 − e   −bs  − bse −bs
                                                      b
                                     L[f(t)] =              =                             .
                                                                       2
                                                 1 − e −bs     b      s (1 − e  −bs )
               . . . .
                                                              28
   24   25   26   27   28   29   30   31   32   33   34