Page 22 - 4811
P. 22

Derivatives


                                          [                              ∫  τ            ]
                                 = lim e     −sτ f(τ) − e  −sδ f(δ) + s      e −st f(t)dt =
                                     δ→0                                  δ
                                    τ→∞
                                                        ∫
                                                          ∞
                                                +
                                      = −f(0 ) + s           e −st f(t)dt (Re(s) > α).
                                                         0
                  Therefore,
                                                                              +
                                                   ′
                                              L(f (t)) = sL(f(t)) − f(0 ).
                  We have made use of the fact that for Re(s) = x > α,

                                |e −sτ f(τ)| ≤ e −xτ Me  ατ  = Me   −(x−α)τ  → 0 as τ → ∞.


                                 +
                                                      +
                                                                    ′
                  Note that f(0 ) exists since f (0 ) = lim f (t) exists. Clearly, if f is continuous at
                                                  ′
                                                            t→0 +
                                   +
                  t = 0, then f(0 ) = f(0) and our formula becomes
                                                    ′
                                               L(f (t)) = sL(f(t)) − f(0).                              (2.3)
                                                                                                           2
               . . . .



                   Remark 2.1E An interesting feature of the derivative theorem is that we obtain
                   L(f (t)) without requiring that f itself be of exponential order. For example it is
                      ′
                                                       ′
                                        2
                                        t
                   true for f(t) = sin(e ).
                .
               . . . . .
                                                                    2
                                                                                       2
                   Example 2.14, Let us compute L(sin ωt) and L(cos ωt) from (2.3).
               . . . . .
                .
                   Solution. For f(t) = sin 2ωt, we have f (t) = 2ω sin ωt cos ωt = ω sin 2ωt.
                                                                   ′
                   From (2.3),
                                                                                 2
                                          L(ω sin 2ωt) = sL(sin 2ωt) − sin 0,

                   that is,

                                             1                   ω       2ω             2ω  2
                                   2
                             L(sin ωt) = L(ω sin 2ωt) =             ·            =                .
                                                                       2
                                                                                               2
                                                                                        2
                                             s                   s s + 4ω     2     s(s + 4ω )
                   Similarly,
                                             1                     1       ω       2ω         1
                                    2
                             L(cos ωt) = L(−ω sin 2ωt) +              = −     ·            +    =
                                                                                 2
                                             s                     s        s s + 4ω     2    s
                                                             2
                                                            s + 2ω   2
                                                       =                .
                                                                     2
                                                              2
                                                          s(s + 4ω )
               . . . .
                   Note that if f(0) = 0, (2.3) can be expressed as


                                                      −1
                                                                       ′
                                                    L (sF(s)) = f (t),
                                                              21
   17   18   19   20   21   22   23   24   25   26   27