Page 27 - 4811
P. 27

Properties of Laplace Transform


                  we obtain
                                    ∫                       ∫    (∫                  )
                                       ∞                       w      ∞
                                         F(x)dx = lim                    e −xt f(t)dt dx.
                                      s               w→∞     s      0
                     ∫  ∞
                  As      e −xt f(t)dt converges uniformly for α < s ≤ x ≤ w, we can reverse the order
                       0
                  of integration, giving

                    ∫                       ∫    (∫                  )              ∫                w
                       ∞                       ∞      w                                ∞  e −xt
                         F(x)dx = lim                   e −xt f(t)dx dt = lim                  f(t) dt =

                     s                w→∞    0       s                        w→∞    0    −t         s
                                  ∫                          ∫                        (      )
                                     ∞      f(t)                ∞       f(t)            f(t)
                               =       e −st     dt − lim         e −wt      dt = L             ,
                                   0          t        w→∞     0          t               t

                  as lim G(w) = 0 for G(w) = L(f(t)/t). The existence of L(f(t)/t) is ensured by
                     w→∞
               . . . .  the hypotheses.                                                                    2
                .



                   Example 2.18,
                              (       )     ∫  ∞
                                 sin t              dx       π                         1
                            L            =                =     − arctan s = arctan       (s > 0).
                                                   2
                                   t         s   x + 1       2                         s


                             (         )     ∫  ∞                 ∫  ∞  (                   )
                               sinh ωt               ωdx        1            1          1
                          L               =                  =                    −            dx =
                                                     2
                                   t           s   x − ω   2    2   s     x − ω      x + ω
                                                     1    s + ω
                                                  =    ln         (s > |ω|).
                                                     2    s − ω
               . . . . .



                     Laplace Transforms of Periodic Functions



               In many applications, the non-homogeneous term in a linear differential
               equation is a periodic function. In this section, we derive a formula for the
               Laplace transform of such periodic functions.

                   Recall that a function f(t) is said to be T-periodic if we have f(t + T) = f(t)
               whenever t and t + T are in the domain of f(t). For example, the sine and cosine
               functions are 2π-periodic whereas the tangent and cotangent functions are

               π-periodic.
                   If f(t) is T-periodic for t ≥ 0 then we define the function
                                                         {
                                                           f(t),   0 ≤ t ≤ T,
                                               f (t) =
                                                T
                                                           0,      t > T.

               The Laplace transform of this function is then

                                                  ∫                      ∫
                                                     ∞                      T
                                     L[f (t)] =         f (t)e −st dt =       f(t)e −st dt.
                                         T
                                                         T
                                                    0                     0
                                                              26
   22   23   24   25   26   27   28   29   30   31   32