Page 26 - 4811
P. 26

Integration
                .


                                 1
                   and b)              .
                             2
                                2
                           s (s + 1)
                                                                    t
                                                                   ∫
                           [      1     ]         [ 1        ]                              t
                         −1                    −1
                    a) L                  = L        L[sin t] =       sin τdτ = − cos τ = 1 − cos t.
                                 2
                             s(s + 1)              s                                        0
                                                                   0
                   And, using the above we can solve the second problem as follows


                                                                                 t
                                                                               ∫
                                  [     1      ]         [ 1              ]
                               −1                     −1
                          b) L                   = L        L[1 − cos t] =        (1 − cos τ)dτ =
                                    2
                                        2
                                   s (s + 1)               s
                                                                               0
                                                                t


                                                = (τ − sin τ) = t − sin t.
                .
               . . . . .                                        0
                   Example 2.17,
                                                   t
                                              (∫             )          (      )
                                                     sin u          1     sin t      1         1
                              L(Si(t)) = L                du    = L               =    arctan .
                                                       u            s       t        s         s
                                                  0
               . . . . .
                   The function, Si(t), is called the sine integral.
                   The result of Theorem 2 can also be expressed in the form

                                                    (        )     ∫  t
                                                       F(s)
                                                 −1
                                               L                =      f(u)du,
                                                         s          0

               where F(s) = L(f(t)). Hence, for example,

                                   (              )       ∫  t
                                           1            1                      1
                                −1
                              L                      =         sinh audu =       (cosh at − 1).
                                          2
                                                2
                                      s(s − a )         a                     a 2
                                                            0
                   Theorem 2.9È

                   If f is piecewise continuous on [0, ∞) and of exponential order α, with
                   F(s) = Lf(t) and such that lim f(t)/t exists, then
                                                      t→0+

                                           ∫                    (      )
                                              ∞
                                                                  f(t)
                                                F(x)dx = L                (s > α).
                                            s                       t
               . . . . . . .

                  PROOF. Integrating both sides of the equation

                                                       ∫
                                                         ∞
                                             F(x) =         e −xt f(t)dt (x real),
               . . . .                                  0


                                                              25
   21   22   23   24   25   26   27   28   29   30   31