Page 18 - 4811
P. 18

Translation theorems
                .


                     b) By definition
                                                                     at
                                                                    e + e  −at
                                                     cosh (at) =               ,
                                                                         2
                        therefore
                                              [ at     −at]
                                               e + e            1     at    1     −at
                                            L                = L[e ] + L[e           ] =
                                                    2           2           2
                                    1      1       1     1       1    s + a + s − a           s
                                 =     ·        +    ·        =    ·                   =           .
                                                                                            2
                                    2 s − a        2 s + a       2 (s − a)(s + a)         s − a   2
                     c) Similarly
                                                                     at
                                                                   e − e   −at
                                                     sinh (at) =               ,
                                                                        2
                        therefore
                                              [ at     −at]
                                               e − e            1           1
                                                                      at
                                            L                = L[e ] − L[e        −at ] =
                                                    2           2           2
                                    1      1       1     1       1    s + a − s + a           a
                                 =     ·        −    ·        =    ·                   =           .
                                                                                            2
                                    2 s − a        2 s + a       2 (s − a)(s + a)         s − a   2
               . . . .



                     Translation theorems




               We present two very useful results for determining Laplace transforms and their
               inverses. The first pertains to a translation in the s-domain and the second to a
               translation in the t-domain.

                   Theorem 2.2È

                   (First Translation Theorem) (First Shifting Theorem). If F(s) = L(f(t))

                   for Re(s) > 0, then

                                                        at
                                     F(s − a) = L(e f(t)), (a real, Re(s) > a).
               . . . . . . .


                  PROOF. For Re(s) > a,

                                       ∫                         ∫
                                          ∞                         ∞
                                                                           e f(t)dt = L(e f(t)).
                         F(s − a) =          e −(s−a)t f(t)dt =       e −st at                at
                                         0                        0
               . . . .
                .


                   Example 2.6,
                                                                           2
                                                 2 3t        2
                                             L[t e ] = L[t ]       =           3 .
                                                                s−3     (s − 3)
               . . . . .




                                                              17
   13   14   15   16   17   18   19   20   21   22   23