Page 17 - 4811
P. 17

Properties of Laplace Transform
                .



                   Example 2.2, f(t) = sin bt. Evaluate Lf(t).
                .
               . . . . .
                   Solution. Apply the Euler formula and Property 1 again

                                                  ibt
                                              L[e ] = L[cos bt] + iL[sin bt],

                                                 1           s
                                                       =           + iL[sin bt],
                                                           2
                                              s − ib      s + b  2
                                         (                    )
                                       1      1          s           1    s + ib − s            b
                         L[sin bt] =               −             =                        =          .
                                                       2
                                                                                              2
                                       i   s − ib     s + b  2       i (s − ib)(s + ib)      s + b  2
                   Thus,
                                                                     b
                                                    L[sin bt] =           .
                                                                   2
                                                                  s + b  2
               . . . .
                   Let us apply formulas obtained in previous examples to find the following
                .
               Laplace transforms.

                                                       2t 2
                   Example 2.3, f(t) = (1 + e ) . Evaluate Lf(t).
                .
               . . . . .
                                                                        2t 2
                                                                                        2t
                                                                                              4t
                   Solution. To do this we first note that (1 + e ) = 1 + 2e + e . So,
                                                                      1       2         1
                                                               4t
                                                         2t
                                  L[f(t)] = L[1 + 2e + e ] =            +          +        .
                                                                      s    s − 2      s − 4
               . . . .
                .
                                                               2
                   Example 2.4, f(t) = (cos t + sin t) . Evaluate Lf(t).
                .
               . . . . .
                                                     2
                   Solution. Since (cos t + sin t) = 1 + 2 sin t cos t = 1 + sin 2t, so

                                                                        1       2
                                         L[f(t)] = L[1 + sin 2t] =        +          .
                                                                               2
                                                                        s     s + 4
               . . . .
                .


                   Example 2.5, Use the linearity property of the Laplace transform
                                                2
                   to determine        a) L[3t +4t−2]; b) L[cosh (at)]; c) L[sinh (at)], where
                   a is a real constant.
               . . . . .
                .
                   Solution.   a)


                                                                                   2
                                                    2
                               2
                          L[3t + 4t − 2] = L[3t ] + L[4t] + L[−2] = 3L[t ] + 4L[t] − 2L[1] =
                                                  2         1        1     6      4     2
               . . . .                     = 3 ·  s 3  + 4 ·  s 2  − 2 ·  s  =  s 3  +  s 2  − .
                                                                                        s

                                                              16
   12   13   14   15   16   17   18   19   20   21   22