Page 19 - 4811
P. 19

Properties of Laplace Transform
                .



                   Example 2.7,

                                                                               2
                                          −t
                                      L[e sin 2t] = L[sin 2t]         =          2      .
                                                                  s+1     (s + 1) + 4
               . . . . .
                .



                   Example 2.8,

                                                                               s − 2
                                        2t
                                    L[e cosh 5t] = L[cosh 5t]          =          2       .
                                                                   s−2     (s − 2) − 25
               . . . . .
                .


                   Example 2.9, Since

                                                           1
                                                 L(t) =        (Re(s) > 0),
                                                           s 2

                   then
                                                             1
                                                  at
                                            L(te ) =                (Re(s) > a),
                                                         (s − a) 2
                   and, in general,

                                                  n!
                                    n at
                               L(t e ) =                  ,   n = 0, 1, 2, . . . (Re(s) > a).
                                             (s − a)  n+1
               . . . . .
                .


                   Example 2.10, Since

                                                                      ω
                                                   L(sin ωt) =             ,
                                                                   2
                                                                  s + ω   2
                   then
                                                           2t
                                                       L(e sin 3t) =
                   In general,

                                                             s − a
                                         at
                                     L(e cos ωt) =                         (Re(s) > a),
                                                                2
                                                        (s − a) + ω    2
                                                               ω
                                          at
                                     L(e sin ωt) =                         (Re(s) > a),
                                                                2
                                                        (s − a) + ω    2
                                                              s − a
                                         at
                                    L(e cosh ωt) =                          (Re(s) > a),
                                                                 2
                                                         (s − a) − ω    2
                                                               ω
                                         at
                                    L(e sinh ωt) =                          (Re(s) > a).
                                                                 2
                                                        (s − a) + ω    2
               . . . . .

                                                              18
   14   15   16   17   18   19   20   21   22   23   24