Page 43 - 457
P. 43

J MC      b      с    L MV   t .   (4.12)
                                                            3
                                                             B
                                                                   3
                                                                    B
                                  Розкладемо змушуючий момент L MV(t) у ряд Фур’є:
                             L MV    Lt   MA 1  cos  MC t   1  L  MA 2  cos 2 MC t  2   2   ...
                                                 
                                                 L MA i  cos i MC t  i   i ,
                                                i 1
                            де  амплітуди  L MVі  та  фази   і  визначаються  за  формулами
                            розкладу в ряд Фур’є.
                                  Потім  використаємо  для  розв’язку  рівняння  (4.12)
                            принцип суперпозиції
                                                                     
                                                     1   2   ...     i         (4.13)
                                                                       .
                                                                    i 1
                                  Для  знаходження  першої  гармоніки   1  підставимо  в
                            рівняння       (4.12)      перший        член      розкладання:
                             L MV 1    L MA 1  cos  MC t     1 :
                                            
                                      J MC    b    c      L MA 1  cos  MC t     1 .
                                                        3
                                                3
                                                    1
                                                 B
                                                         B
                                                            1
                                            1
                                  Для  усталеного  руху  не  потрібно  знаходити  члени
                            вільного  коливання,  а  досить  обмежитися  частинним
                            розв’язком, добре відомим з теоретичної механіки:
                                                    L MA 1
                                                      2             cos  MC t       1  
                                                                                     1
                                    1
                                                2
                                         c 3 B    MC J MC   b   3 B  MC  2          ,
                                                     A 1  cos  MC t       1 
                                                                       1
                                                                                       (4.14)
                                                   b           
                                  де  1   arctg   3 B  2 MC     .
                                                                 
                                               
                                                 c
                                                3 B   MC  J  MC  
                                  Аналогічно  одержуємо  частинний  розв’язок   і  для
                            складової за номером і:
                                                      L MAi  cos i MC t  i      i 
                                                                           i
                                                                                   
                                               i
                                                                2     2            2   ,
                                                   c 3 B   i MC   J  MC     ib  MC  
                                                                           3
                                                                            B
                                                      Ai  cos i MC t   i      i 
                                                                          i
                                                           42
   38   39   40   41   42   43   44   45   46   47   48