Page 39 - 4560
P. 39

where      ,  ,      - angles of resistant cross-section rotation
                   , n n 1  nn  , n n 1
          of one-span beam of  equivalent systeme on  n й  resistance to
          the action of the points  M  n 1 1 ,  M   1,  M  n 1 1 ,  but    -
                                                n
                                                                      пр
          from the effects of external loading.
          Coefficients of equation (3.8) we will define by Vereshchagin’s
          method (fig. 3.5):












                                      Figure 3.5



                         1  1  l             1  2   1    2  1
              EJ        l    n  ;     EJ     l   l     ll  ;
                   n
                      1
                   ,n
                 z
                         2  n  3  6    z  nn  2  n  3  2  n  1   3  3  n  n  1 

                                      1   1   l n  1
                           EJ z  n ,n  1    l n  1 3   6  .         (3.9)
                                      2

          Free member of the equation (3.8)    i.e., the mutual angle of
                                               пр
          the resistant cross-section rotation of simple beams of equivalent
          system on  n й resistance from the action of external loads, we
          will display it as the sum of the angles  and  on the left and
                                                  n       n
          right side from  n ї  resistance (fig. 3.6)





                                  Figure 3.6
                                         39
   34   35   36   37   38   39   40   41   42   43   44