Page 62 - 169
P. 62
Далі визначають три допоміжні величини:
- суму квадратів усіх величин відгуку:
q p
2
Q ( y ) (5.1)
1 ij
i 1 j 1
- суму квадратів групових середніх значень поділену на кількість
спостережень за паралельних експериментів:
1 p
2
Q ( y ) (5.2)
2 j
q j 1
- квадрат суми всіх величин відгук поділений на кількість
спостережень:
2
1 q p
Q y (5.3)
3 ij
p q 1 i 1 j
Правильність отриманих результатів підтверджується у випадку,
якщо:
Q Q Q
1 2 3
Після цього визначають величину дисперсій відтворення і величину
факторних дисперсій згідно наступних виразів:
Q Q
2
в 1 2 (5.4)
p ( q ) 1
Q Q
ф 2 2 3 (5.5)
p 1
Відношення факторної дисперсії (σ ф) до дисперсії відтворення (σ в), згідно
критерію Фішера порівнюють з табличним значенням:
2
ф
F F D ф f ; в f ; (5.6)
2
в
де: D - рівень значущості (для технічних вимірів складає 0.95);
f ф= q·(p-1) - число степенів свободи факторної дисперсії;
f ф= q-1 - число степенів свободи дисперсії відтворення;
Якщо наведена нерівність (5.6) задовольняється, то вважається, що
фактор (x) має дієвий вплив на відгук (y), тобто між ними існує залежність.
Тісноту зв’язку цієї залежності визначають за допомогою кореляційного
аналізу. Для цього будують поле кореляції, для чого обводять на графіку усі
експериментальні точки контуром, рис.5.4.