Page 60 - 6637
P. 60

Solved Problems






                                                      2
                                                         3
                                                  8dδ L v                     nπd         nπξ
                           u (t) =                                       cos           sin
                             n
                                                                   2 2
                                       3
                                                           2
                                                 2 2 2
                                           2
                                     π (L − c δ n )(L − 4d n )                   L             L

                      L       nπcδ         nπc(t − δ)         π             nπcδ           nπc(t − δ)
                          sin        cos                   +      1 + cos            sin                    .
                     δcn        L                L            δ               L                 L
                   Width of the Hammer. The n             th  harmonic has the width dependent factor,

                                                       d              nπd
                                                               cos           .
                                                           2 2
                                                   2
                                                 L − 4d n              L
               Differentiating this expression and trying to find zeros to determine extrema would
               give us an equation with both algebraic and transcendental terms. Thus we don’t
               attempt to find the maxima exactly. We know that d < L. The cosine factor is

               large when
                                           nπd
                                                 ≈ mπ,      m = 1, 2, . . . , n − 1,
                                             L
                                                  mL
                                             d ≈       ,   m = 1, 2, . . . , n − 1.
                                                   n

               Substituting d = mL/n into the width dependent factor gives us

                                                           d
                                                                         m
                                                                   (−1) .
                                                                 2
                                                      2
                                                    L (1 − 4m )
               Thus we see that the amplitude of the n          th  harmonic and hence its kinetic energy
               will be maximized for
                                                                 L
                                                            d ≈
                                                                 n
               The cosine term in the width dependent factor vanishes when

                                                (2m − 1)L
                                           d =               ,   m = 1, 2, . . . , n.
                                                     2n
               The kinetic energy of the n      th  harmonic is minimized for these widths.
                                                                                                          2
                   For the lower harmonics, n           L  , the kinetic energy is proportional to d ; for
                                                        2d
                                                                                                   2
               the higher harmonics, n         L  , the kinetic energy is proportional to 1/d .
                                                2d
                   Duration of the Blow. The n          th  harmonic has the duration dependent factor,
                     δ 2         L       nπcδ       nπc(t − δ)      π            nπcδ       nπc(t − δ)
                                      sin        cos              +      1 + cos           sin                 .
                        2 2 2
                  2
                L − n c δ        ncδ        L             L          δ               L               L
               If we assume that δ is small, then

                                                    L         nπcδ
                                                        sin            ≈ π.
                                                   ncδ          L


                                                              56
   55   56   57   58   59   60   61   62   63   64   65