Page 56 - 6637
P. 56

Solved Problems


               in the velocity as a function of x, the coefficients in the expansion will decay as
                    2
               1/n .

                                            ∞                           (
                                                nπc         nπx         v    for |x − ξ| < d
                                           X
                              u (x, 0) =            b sin            =
                                t
                                                      n
                                                 L             L          0 for |x − ξ| > d.
                                           n=1
                                                       Z  L
                                         nπc         2                    nπx
                                              b =           u (x, 0) sin           dx
                                               n
                                                              t
                                           L         L   0                   L
                                                   2   Z  ξ+d        nπx
                                           b =                v sin          dx
                                            n
                                                 nπc    ξ−d            L

                                                  4Lv          nπd           nπξ
                                              =          sin           sin
                                                   2 2
                                                 n π c           L             L
               The solution for u(x, t) is,


                                         ∞
                                  4Lv   X    1        nπd           nπξ          nπx         nπct
                       u(x, t) =                sin           sin           sin          sin            .
                                    2
                                   π c       n 2        L             L            L             L
                                        n=1

                   b) The form of the solution is again,
                                                     ∞

                                                    X            nπx           nπct
                                        u(x, t) =       b sin            sin
                                                          n
                                                                   L             L
                                                    n=1
               We determine the coefficients in the expansion from the initial velocity.


                                    ∞                                      π(x−ξ)
                                                                 (
                                        nπc          nπx         v cos              for |x − ξ| < d
                                   X
                       u (x, 0) =            b sin            =              2d
                        t
                                              n
                                         L             L           0                  for |x − ξ| > d.
                                   n=1
                                                       Z  L
                                         nπc         2                    nπx
                                              b =           u (x, 0) sin           dx
                                                              t
                                               n
                                           L         L   0                   L
                                           2   Z  ξ+d        π(x − ξ)         nπx
                                   b =                v cos                sin           dx
                                    n
                                         nπc    ξ−d               2d               L
                                    
                                              2
                                           8dL v           nπd        nπξ                     L
                                                     cos        sin                 for d 6=    ,
                                             2
                                         2
                                      nπ c(L −4d n )        L           L                     2n
                                                 2 2
                             b =
                               n
                                        v                      2nπd        nπξ               L
                                            2nπd + L sin              sin           for d =
                                        2 2
                                      n π c                      L            L               2n
               The solution for u(x, t) is,
                                     ∞
                            8dL v                1             nπd       nπξ      nπx       nπct             L
                                 2 X
                u(x, t) =                                 cos        sin      sin       sin        for d 6=     ,
                                             2
                                                     2 2
                               2
                             π c         n(L − 4d n )           L         L         L         L             2n
                                    n=1
                                                              52
   51   52   53   54   55   56   57   58   59   60   61