Page 57 - 6637
P. 57

Solved Problems


                                  ∞
                             v  X     1                    2nπd         nπξ       nπx       nπct              L
                u(x, t) =                  2nπd + L sin             sin       sin       sin         for d =     .
                             2
                            π c      n 2                     L            L         L         L              2n
                                 n=1

                   c) The kinetic energy of the string is

                                                        Z  L
                                                      1                  2
                                                E =          ρ (u (x, t)) dx,
                                                                  t
                                                      2   0
               where ρ is the density of the string per unit length.
                   Flat Hammer. The n         th  harmonic is


                                    4Lv          nπd           nπξ         nπx          nπct
                            u =            sin          sin           sin           sin           .
                              n
                                     2 2
                                   n π c          L             L             L             L
               The kinetic energy of the n      th  harmonic is

                            ρ  Z  L   ∂u n   2     4Lv  2       nπd          nπξ           nπct
                    E =                       dx =          sin 2          sin 2          cos 2           .
                       n
                                                       2 2
                            2   0     ∂t             n π             L              L              L
               This will be maximized if

                                                            nπξ
                                                     sin 2           = 1,
                                                              L
                                           nπξ      π(2m − 1)
                                                =               ,   m = 1, . . . , n,
                                            L            2
                                                  (2m − 1)L
                                             ξ =               ,   m = 1, . . . , n
                                                       2n

                                                                                               2
               We note that the kinetic energies of the n        th  harmonic decay as 1/n .
                   Curved Hammer. We assume that d 6=               L  . The n  th  harmonic is
                                                                    2n
                                       2
                                   8dL v               nπd         nπξ         nπx        nπct
                     u =                          cos           sin           sin          sin            .
                      n
                                    2
                               2
                                            2 2
                            nπ c(L − 4d n )               L            L             L             L
               The kinetic energy of the n      th  harmonic is
                        Z  L        2               2  3 2
                      ρ        ∂u n               16d L v                nπd            nπξ            nπct
               E =                     dx=                       cos 2           sin 2          cos 2           .
                 n
                                                           2 2 2
                                                   2
                                               2
                      2   0     ∂t           π (L − 4d n )                 L              L              L
               This will be maximized if

                                                             nπξ
                                                     sin 2           = 1,
                                                              L
                                                  (2m − 1)L
                                             ξ =               ,   m = 1, . . . , n
                                                       2n

                                                                                               4
               We note that the kinetic energies of the n        th  harmonic decay as 1/n .


                                                              53
   52   53   54   55   56   57   58   59   60   61   62