Page 59 - 6637
P. 59

Solved Problems


               Since the initial position and velocity of the string is zero, we have


                                                                0
                                                    u (0) = u (0) = 0.
                                                      n
                                                                n
               First we solve the differential equation on the range 0 < t < δ. The homogeneous
               solutions are

                                                     nπct               nπct
                                              cos            ,   sin            .
                                                       L                  L
               Since the right side of the ordinary differential equation is a constant times sin(πt/δ),

               which is an eigenfunction of the differential operator, we can guess the form of a
               particular solution, p (t).
                                       n

                                                                      πt
                                                    p (t) = d sin
                                                      n
                                                                       δ
               We substitute this into the ordinary differential equation to determine the multi-
               plicative constant d.

                                                    3
                                                 2
                                             8dδ L v                     nπd         nπξ         πt
                    p (t) = −                                       cos           sin           sin
                      n
                                      2
                                  3
                                            2 2 2
                                                      2
                                                              2 2
                                π (L − c δ n )(L − 4d n )                   L            L             δ
               The general solution for u (t) is
                                              n

                                                                          3
                                                                       2

                                                               8dδ L v cos     nπd  sin   nπξ   sin  πt
                                    nπct               nπct                         L          L          δ
                 u (t) = a cos              + b sin             −                                            .
                   n
                                                                                  2 2 2
                                                                            2
                                                                                             2
                                                                                                    2 2
                                                                        3
                                      L                  L             π (L − c δ n )(L − 4d n )
               We use the initial conditions to determine the constants a and b. The solution for
               0 < t < δ is


                                    2
                                       3
                                8dδ L v cos     nπd   sin  nπξ
                                                 L          L         L         nπct              πt
                     u (t) =                                              sin            − sin           .
                       n
                                                     2
                                                             2 2
                                     2
                                 3
                                           2 2 2
                               π (L − c δ n )(L − 4d n )             δcn          L               δ
               The solution for t > δ, the solution is a linear combination of the homogeneous
               solutions. This linear combination is determined by the position and velocity at
               t = δ. We use the above solution to determine these quantities.
                                                 4
                                              2
                                          8dδ L v                        nπd         nπξ         nπcδ
                 u (δ) =                                           cos           sin           sin
                   n
                                      2
                                                              2 2
                             3
                                                      2
                                            2 2 2
                            π δcn(L − c δ n )(L − 4d n )                   L             L              L
                                               3
                                            2
                                        8dδ L v                      nπd         nπξ              nπcδ
                  0
                u (δ) =                                        cos           sin             1 + cos
                  n         2     2     2 2 2     2      2 2
                           π δ(L − c δ n )(L − 4d n )                  L             L                   L
               The fundamental set of solutions at t = δ is

                                             nπc(t − δ)        L          nπc(t − δ)
                                       cos                   ,     sin
                                                  L           nπc              L
               From the initial conditions at t = δ, we see that the solution for t > δ is
                                                              55
   54   55   56   57   58   59   60   61   62   63   64