Page 53 - 6637
P. 53

Solved Problems


               We expand u(x, t) in a series of the eigen-solutions.

                           ∞
                          X          (2n − 1)πx                 (2n − 1)cπt                 (2n − 1)cπt
                u(x, t)=       sin                     a cos                    +b sin                         .
                                                                                    n
                                                        n
                                          2L                         2L                          2L
                          n=1
               We impose the initial condition u (x, 0) = 0,
                                                      t
                                              ∞
                                             X       (2n − 1)cπ          (2n − 1)πx
                                 u (x, 0) =       b n             sin                    = 0,
                                  t
                                                          2L                  2L
                                              n=1
                                                           b = 0.
                                                             n
               The initial condition u(x, 0) = f(x) allows us to determine the remaining coeffi-
               cients,
                                                   ∞
                                                 X              (2n − 1)πx
                                      u(x, 0) =       a sin                     = f(x),
                                                        n
                                                                     2L
                                                  n=1
                                               2  Z  L           (2n − 1)πx
                                        a =           f(x) sin                     dx.
                                         n
                                               L   0                    2L
               The series solution for u(x, t) is,


                                           ∞
                                          X             (2n − 1)πx             (2n − 1)cπt
                              u(x, t) =        a sin                    cos                     .
                                                n
                                                             2L                     2L
                                          n=1



               Exercise 160. Find the modes of oscillation and their frequencies for a rectangular
               drum head of width a and height b. The modes of oscillation are eigensolutions of

                                                  2
                                          u = c ∆u,        0 < x < a, 0 < y < b,
                                           tt
                                       u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0.

               Solution:

                                                  2
                                          u = c ∆u,        0 < x < a, 0 < y < b,                          (8.1)
                                           tt
                                       u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0.


                   We substitute the separation of variables u(x, y, t) = X(x)Y (y)T(t) into Equa-
               tion 8.1.

                                                  T  00    X 00   Y  00
                                                       =       +       = −ν
                                                   2
                                                  c T      X       Y
                                                  X  00      Y  00
                                                       = −       − ν = −µ
                                                   X         Y




                                                              49
   48   49   50   51   52   53   54   55   56   57   58